

Streamlet: Textbook streamlined blockchain protocols

Elaine Shi Joint work with Benjamin Chan

Streamlet is inspired by Casper, Dfinity, Hotstuff, Pili, Pala...

(a.k.a. state machine replication, consensus)

(a.k.a. state machine replication, consensus)

Consistency: Honest players agree on log

Liveness: TXs are incorporated soon

Blockchain: A 30-year-old Problem

Cryptocurrencies brought consensus to a large scale

Enables permissionless consensus

Proof of work

Proof of work

Proof of stake

Rely on **permissioned** consensus

Proof of work

Proof of stake

Pursuit of a "Simple" Consensus Protocol

"Paxos Made Moderately Complex" [ACM Computing Surveys'15]

"Zyzzyva: Speculative Byzantine Fault Tolerance" [Communications of the ACM'09]

"Paxos Made Simple"

"The ABCDs of Paxos" [PODC'01]

"RAFT: In search of an understandable consensus algorithm" [Usenix ATC'14]

... ...

Complex Difficult to understand Error-prone to implement

PBFT

Paxos

and variants

Unified, for pedagogy & implementation

Classical approaches (e.g., pbft, paxos)

Streamlet: a streamlined blockchain

Assume: S increment in a valid blockchain

Leader proposes block

🔞 Finalize 🕗 upon 🖓 n votes

²/₃ n votes: notarization

Honest players vote uniquely each epoch

Assume: < ¹/₃ n corrupt

Consistency ²/₃ honest Liveness

How do we achieve liveness?

Anatomy of classical consensus

Simple normal path

Complicated recovery path

Can we achieve <u>full</u> consensus <u>as</u> <u>simply as the normal path</u>?

Classical approaches (e.g., pbft, paxos)

Streamlet

Assume: epoch = 1 sec ≥ 1 roundtrip

Leader rotation

Player H(i) mod n is the leader in epoch i

Easy to support any other leader-rotation policy

extend longest notarized chain

vote for the 1st proposal from leader iff it extends from one of the longest notarized chains seen Every epoch

Finalization: <u>3 consecutive epochs</u> appear together in a notarized chain, all but last <u>final</u>

Finalization: 3 consecutive epochs appear together in notarized chain, all but last final

Consistency Proof

Finalization: 3 consecutive epochs in notarized chain, all but last final

Case 1

Case 2

Lemma: every epoch has at most 1 notarized block.

"many": <u>> n/3 honest</u> **Proof:** <u>many voted for 8</u> in epoch 8

"many": > n/3 honest Proof: many voted for <a>3 in epoch 8 --> many saw <a>7 notarized in epoch 8

"many": > n/3 honest Proof: many voted for ③ in epoch 8 --> many saw? • notarized in epoch 8 --> they will not vote for ④ in epoch 9

"many": > n/3 honest "many": > n/3 honest many voted for 3 in epoch 8 --> many saw 7 notarized in epoch 8 --> they will not vote for 9 in epoch 9 --> 0 cannot gain notarization

Case 1

Case 2

"many" : > n/3 honest Proof: many voted for <5 in epoch 5</pre>

"many" : > n/3 honest
Proof:
 many voted for 5 in epoch 5
--> many saw 3 notarized in epoch 5

"many" : > n/3 honest
Proof:
 many voted for 5 in epoch 5
--> many saw 3 notarized in epoch 5
--> they will not vote for 6 in epoch 6

⊷6 **∙**7 **∼8**

• 1

"many" : > n/3 honest
Proof:
 many voted for 5 in epoch 5
--> many saw 3 notarized in epoch 5
--> they will not vote for 6 in epoch 6
--> 6 cannot gain notarization

6 7 38

• 1

Consistency does not depend on sync. assumptions!

Summary: streamlined blockchains

Every epoch allows leader-switch. View change embedded in a unified "propose-vote" paradigm.

Read after me:

Propose-vote, propose-vote, propose-vote
Boom boom boom

- Don't finalize upon notarization
- 3 consecutive epochs appear together, chop off the last and malize the prefix

"Foundations of Distributed Consensus and Blockchains" www.distributedconsensus.net

Thank You! runting@gmail.com