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Secure�Water�Treatment�Plant�(SWaT)

 

Fig. 1. The SecureWater Treatment (SWaT) testbed [46]

that require only very few compromises.
Figure 3 shows an overview of our approach to the security

analysis of a CPS. The engineer begins by building a model
of the system, and providing an attack specification that
determines the overall capabilities of the attacker. Given these
two inputs, an analysis tool is used to automatically generate
an attack scenario that describes how the system may end
up in an unsafe state. The attack planner then converts this
scenario into a validation sequence, which is a series of
control inputs that is intended to simulate the effects of the
generated attack; currently, this step is performed manually
by an engineer of the system. The validation sequence is then
performed on the actual testbed, confirming that the attack is
indeed feasible, or that it describes an invalid behavior of the
system; in the latter case, the engineer may refine the system
model in order to rule out the spurious scenario. The entire
process may be carried out repeatedly until the analyzer fails
to detect any further attacks on the system.

System Model: In our approach, a system is modeled as
consisting of four types of components, as shown in Figure
4: Physical processes, sensors, actuators, and controllers. A
physical process represents a mechanical or physical entity
that the system is designed to control (e.g., water tank). Each
physical process is connected to a sensor, which periodically
performs a reading of its state, and one or more actuators,

which directly manipulate the physical process to alter its
state. A controller performs actions to activate or deactivate
an actuator, depending on the information received from its
sensors.

Analysis: A system is said to be in an unsafe state when one
of its physical processes exceeds its operational boundary. The
goal of our analysis is to check whether there exists a system
trace that results in an unsafe state, given that some subset
of components have been compromised by the attacker; this
subset is called an attack configuration. A distinguished feature
of our analysis is in the parametricity of attack configurations.
Instead of requiring the user to explicitly specify which
components are compromised, our analysis will automatically
explore all possible attack configurations and enumerate ones
that lead the system into an unsafe state. If desired, the user
can also tune possible attack configurations by providing an
optional specification that limits the number of components
in a configuration, or requiring a particular component to be
included in or excluded from a configuration.

Threat Model: Given that formal approach, ultimately, is
intended to generate attacks for evaluating CPS defence solu-
tions, it is important to detail our assumptions about systems
and attackers, thus characterizing the kinds of attacks that will
be found. In the model building phase of our approach, we
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• Fully functional water treatment plant, developed at Singapore
University of Technology & Design (SUTD)

• 6-stage distributed control system; 62 sensors & actuators
• Wireless communication to programmable logic controllers (PLCs)



        
      

   
       

   

Challenges�to�Securing�SWaT 
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• Legacy SCADA: Little built-in security protection; limited use of
crypto; connected to the Web (remote operator interface)

• Heterogenous: Network + software (PLC) + physical processes
• Beyond security: An attack can have safety implications (e.g.,

tank overflow, pump damage, water contamination)
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• Goal: What are possible attacks on the system that could lead to
safety failures? Can we synthesize & validate them automatically? 

• Benefits: (1) Reduce the cost of security testing and (2) Identify 
potential security flaws before deployment 

• Research Thrusts 
• Model-driven, automated attack synthesis using formal methods 
• Data-driven inference of physical dynamics model 



    
      

  
         
   
      

       

Thrust�1:�Attack�Synthesis�for�ICS 
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• Goal: Automatically synthesize targeted attacks offline for security testing
• System model: Connections between controllers, sensors and actuators;

controller logic; built-in safety monitor
• e.g., Monitor: “Raise an alert if the water tank is about to overflow”

• Attacker model: Manipulate sensor readings & actuator commands
• Stealthy attack generation: Generate sequences of attack actions that

bypass the monitor & induce system into an unsafe state (e.g., overflow)



Modeling�an�Attacker 
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 Attacker as an edit function 
A:�T�→�T 

Edit automata: Enforcement mechanisms for run-time security policies 
Ligatti, Bauer, Walker (2005) 
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Attacker as an edit function 
A:�T�→�T 

Monitor as a predicate on traces 
M:�T�→�{true,�false} 

where�M(t)�=�true�if system execution t satisfies its invariants 



    
     

Targeted,�Stealthy�Attack�Synthesis 

Given a particular monitor (M), is there
an unsafe trace that remains undetected by M? 

∃t,t'�∈�T�|� safe(t)�∧�t'�=�A(t)�∧�M(t')�=�true ¬

original 
trace  

edited   
trace 

Example� 
safe(t)�=�“Water�level�must�remain�below�a�max.�threshold�over�trace�t”� 
M(t’)�=�“Water�level�rises�if�and�only�if�there�is�inflow�into�the�tank” 



 
 

Attack�Synthesis�as�Constraint�Solving 

Models (system architecture,
attacker) + safety requirement Logical constraints 

�

...(b _ (x + y  0))

(¬b _ (x + z  10))  
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Constraint Solver  
(SMT) 

“Is there a possible   
attack that results in a    

safety violation?” 
Satisfying instance as an   

attack trace 



    
  

       
 

     
    

Thrust�2:�Learning�ICS�Dynamics�Model 

Sensor & actuator signals    

TABOR: Model   
Inference  Tool 

Timed automata  

• Goal: Learn models capturing dynamics of sensors & actuators
from plant operational logs

• Learn interpretable models that can be composed with system
models for formal reasoning

• Underlying approach: Program synthesis with deep reinforcement
learning & MCTS (joint work w/ Vincent Hellendoorn)



Automating�Security�Evaluation�of�ICS 
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• Goal: What are possible attacks on the system that could lead to
safety failures? Can we synthesize & validate them automatically? 

• Benefits: (1) Reduce the cost of security testing and (2) Identify 
potential security flaws before deployment 

• Research Thrusts 
• Model-driven, automated attack synthesis using formal methods 
• Data-driven inference of physical dynamics model 



Critical�Infrastructure:�Interconnection 
Water Treatment Water Distribution 

Power generation, transmission, distribution 
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• Modeling & analysis of cascading attacks across multiple ICS 
• Design methods to achieve resiliency against cascading attacks 



 Thank you!
Any questions? 

eskang@cmu.edu 

mailto:eskang@cmu.edu
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