
Systematic�Attack�Generation�
for�Industrial�Control�Systems

Eunsuk�Kang�

Sept�24,�2020

Secure�Water�Treatment�Plant�(SWaT)

Fig. 1. The SecureWater Treatment (SWaT) testbed [46]

that require only very few compromises.
Figure 3 shows an overview of our approach to the security

analysis of a CPS. The engineer begins by building a model
of the system, and providing an attack specification that
determines the overall capabilities of the attacker. Given these
two inputs, an analysis tool is used to automatically generate
an attack scenario that describes how the system may end
up in an unsafe state. The attack planner then converts this
scenario into a validation sequence, which is a series of
control inputs that is intended to simulate the effects of the
generated attack; currently, this step is performed manually
by an engineer of the system. The validation sequence is then
performed on the actual testbed, confirming that the attack is
indeed feasible, or that it describes an invalid behavior of the
system; in the latter case, the engineer may refine the system
model in order to rule out the spurious scenario. The entire
process may be carried out repeatedly until the analyzer fails
to detect any further attacks on the system.

System Model: In our approach, a system is modeled as
consisting of four types of components, as shown in Figure
4: Physical processes, sensors, actuators, and controllers. A
physical process represents a mechanical or physical entity
that the system is designed to control (e.g., water tank). Each
physical process is connected to a sensor, which periodically
performs a reading of its state, and one or more actuators,

which directly manipulate the physical process to alter its
state. A controller performs actions to activate or deactivate
an actuator, depending on the information received from its
sensors.

Analysis: A system is said to be in an unsafe state when one
of its physical processes exceeds its operational boundary. The
goal of our analysis is to check whether there exists a system
trace that results in an unsafe state, given that some subset
of components have been compromised by the attacker; this
subset is called an attack configuration. A distinguished feature
of our analysis is in the parametricity of attack configurations.
Instead of requiring the user to explicitly specify which
components are compromised, our analysis will automatically
explore all possible attack configurations and enumerate ones
that lead the system into an unsafe state. If desired, the user
can also tune possible attack configurations by providing an
optional specification that limits the number of components
in a configuration, or requiring a particular component to be
included in or excluded from a configuration.

Threat Model: Given that formal approach, ultimately, is
intended to generate attacks for evaluating CPS defence solu-
tions, it is important to detail our assumptions about systems
and attackers, thus characterizing the kinds of attacks that will
be found. In the model building phase of our approach, we

UV
dechlorinator

Ultrafiltration
Unit

Chemical
dosing station

Cabinet
with PLCs

Reverse
Osmosis Unit

• Fully functional water treatment plant, developed at Singapore
University of Technology & Design (SUTD)

• 6-stage distributed control system; 62 sensors & actuators
• Wireless communication to programmable logic controllers (PLCs)

Challenges�to�Securing�SWaT

Insider
threats

Web attacks

Wireless
attacks

Physical
attacks

• Legacy SCADA: Little built-in security protection; limited use of
crypto; connected to the Web (remote operator interface)

• Heterogenous: Network + software (PLC) + physical processes
• Beyond security: An attack can have safety implications (e.g.,

tank overflow, pump damage, water contamination)

Automating�Security�Evaluation�of�ICS

Attack TracesA
System

Logs
Model

Inference
Tool

Operator

System
Architecture

Model

Physical
Dynamics

Model

Threat Model
Library

CPS Modeling
Framework

Automated
Attack

Synthesizer ttack TracesAttack Traces
Validation
Testbed

Valid Attack:
Yes or No?

• Goal: What are possible attacks on the system that could lead to
safety failures? Can we synthesize & validate them automatically?

• Benefits: (1) Reduce the cost of security testing and (2) Identify
potential security flaws before deployment

• Research Thrusts
• Model-driven, automated attack synthesis using formal methods
• Data-driven inference of physical dynamics model

Thrust�1:�Attack�Synthesis�for�ICS

System

Architecture
Model

Attacker
Model

Discrete Attack
Generator

(Alloy)

Discrete Attack
Trace

Plant
Dynamics

Model

Timed Attack
Concretization

(UPPAAL)

Timed Attack
Trace

Validation
Testbed

Valid attack
or no?

• Goal: Automatically synthesize targeted attacks offline for security testing
• System model: Connections between controllers, sensors and actuators;

controller logic; built-in safety monitor
• e.g., Monitor: “Raise an alert if the water tank is about to overflow”

• Attacker model: Manipulate sensor readings & actuator commands
• Stealthy attack generation: Generate sequences of attack actions that

bypass the monitor & induce system into an unsafe state (e.g., overflow)

Modeling�an�Attacker

Controller

Actuator

Physical
Process

Sensor T:�Traces�=�
Sequences�of�
observations

A
A

M

 Attacker as an edit function
A:�T�→�T

Edit automata: Enforcement mechanisms for run-time security policies
Ligatti, Bauer, Walker (2005)

Modeling�the�Monitor

Monitor
Controller

Sensor Actuator

Physical
Process

A

M

A

T:�Traces

Attacker as an edit function
A:�T�→�T

Monitor as a predicate on traces
M:�T�→�{true,�false}

where�M(t)�=�true�if system execution t satisfies its invariants

Targeted,�Stealthy�Attack�Synthesis

Given a particular monitor (M), is there
an unsafe trace that remains undetected by M?

∃t,t'�∈�T�|� safe(t)�∧�t'�=�A(t)�∧�M(t')�=�true ¬

original
trace

edited  
trace

Example�
safe(t)�=�“Water�level�must�remain�below�a�max.�threshold�over�trace�t”�
M(t’)�=�“Water�level�rises�if�and�only�if�there�is�inflow�into�the�tank”

Attack�Synthesis�as�Constraint�Solving

Models (system architecture,
attacker) + safety requirement Logical constraints

�

...(b _ (x + y  0))

(¬b _ (x + z  10))
8x · (x - � y  0) ^

 (z - x � 1)...

Constraint Solver
(SMT)

“Is there a possible
attack that results in a

safety violation?”
Satisfying instance as an

attack trace

Thrust�2:�Learning�ICS�Dynamics�Model

Sensor & actuator signals

TABOR: Model
Inference Tool

Timed automata

• Goal: Learn models capturing dynamics of sensors & actuators
from plant operational logs

• Learn interpretable models that can be composed with system
models for formal reasoning

• Underlying approach: Program synthesis with deep reinforcement
learning & MCTS (joint work w/ Vincent Hellendoorn)

Automating�Security�Evaluation�of�ICS

Automated
Attack

Synthesizer

System
Architecture

Model

Threat Model
Library

Physical
Dynamics

Model

Model
Inference

Tool
System

Logs

Operator

Attack Traces
Validation
Testbed Attack TracesAttack Traces

Valid Attack:
Yes or No?

CPS Modeling
Framework

• Goal: What are possible attacks on the system that could lead to
safety failures? Can we synthesize & validate them automatically?

• Benefits: (1) Reduce the cost of security testing and (2) Identify
potential security flaws before deployment

• Research Thrusts
• Model-driven, automated attack synthesis using formal methods
• Data-driven inference of physical dynamics model

Critical�Infrastructure:�Interconnection
Water Treatment Water Distribution

Power generation, transmission, distribution

• ~-
I
-

-- •

f
•

<tr

1 _/

• Modeling & analysis of cascading attacks across multiple ICS
• Design methods to achieve resiliency against cascading attacks

 Thank you!
Any questions?

eskang@cmu.edu

mailto:eskang@cmu.edu

Accessibility Report

		Filename:

		5-kang-accessible.pdf

		Report created by:

		Emily Schneider

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 3

		Passed: 26

		Failed: 1

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Skipped		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Skipped		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Failed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top
	Attack Traces:
	System Logs:
	undefined:
	Discrete Attack TraceRow1:
	Discrete Attack TraceRow1_2:
	Attack Traces_2:
	System Logs_2:
	undefined_2:

