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Algorithms +—> Society

How can we make machine learning better
aligned with societal values!?

Focus: privacy and fairness



Differential Privacy

¥ Algorithm —

Sensitive Data Set Output Distribution
(e.g., medical records) (e.g., noisy statistics)

“An algorithm is differentially private if changing a single
record does not alter its output distribution by much.”
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Challenge in Adoption:

How to facilitate non-privacy experts to work with
differential privacy?



Differentially Private Synthetic Data
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Sensitive data set
(e.g. medical records)
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Synthetic data set
“Fake” data records that preserve
important statistical properties

Allow arbitrary usage

Data Scientist
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Privacy-Preserving GANs Support Clinical Data Sharing
[BWWLBBG]

Published in Circulation: Cardiovascular Quality and Outcomes 2019

Data Set
Systolic Blood Pressure Intervention Trial (SPRINT)
+ 9,361 patients (3 measurements over |2 periods)

SPKINT

Approach
Generative adversarial nets (GANSs)
+ Differential privacy
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Generative Adversarial Nets (GANs)
‘GPM+14]

2-Player Zero-Sum Game

Generator: Noise o 8 Fake Examples
mimic the real data /I\ e 8 (patient data)
. |
Discriminator: Real/Fake EL o | Predictions on
. . . —> AL —> « 9 « )
distinguish real and fake data  Examples XX real” or “fake



Private GAN Training

Training Generator:
Does not directly interact with real data

Train using standard (non-private) methods
(e.g., SGD)

Privately Training Discriminator:
Interacts with real data
Train using differentially private SGD method
» Gradient clipping + Gaussian Perturbation

Synthetic

[BWW+19]
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Models Trained on Synthetic v.s. Real Data

¢ Accuracy w/ real training data
@ Accuracy w/ synthetic training data

0.95

PR 4
09

O 4 O
0.85

O
Test e 8
Accuracy o
0.7
0.65
0.6
0.55
0.5
Random Nearest Logistic

Forest Neighbor SV Regression
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Evaluation with Human (Discriminators)

Synthetic

Real Data Scores for Real

Dat
e Scores for Synthetic I

50 synthetic 50 real
: 0.200

examples patients
0.175
Mixed 0.150
Data Set 0.125
l 0.100
O O O 0.075

3 clinicians ‘ ‘ ‘
0.050

l 0.025

Provide a realistic score from 0 to 10 0.000 . , ) 3 . 0
for each example Realistic Score (0 least real, 10 most real)
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Synthetic Data for Query Release

Sensitive data Synthetic data o >
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Statistical queries
(e.g., fraction of people who
smoke and have lung diseases)

Fast algorithms by leveraging off-the-shelf solvers
(e.g., Gurobi, CPLEX)

‘GGHRW] ICMLI4; [NRW] FOCSI9
VTBSW] ICML20
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