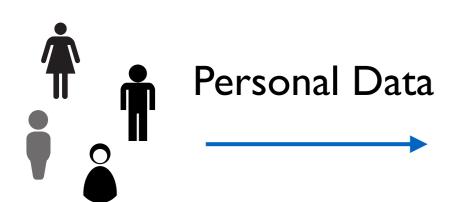
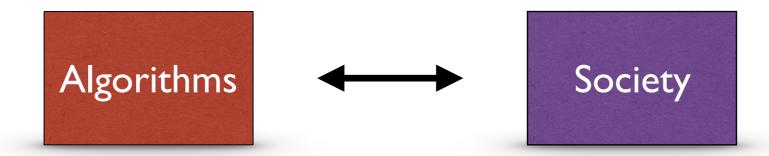
Privacy-Preserving Synthetic Data

Steven Wu

Assistant Professor Institute for Software Research



Machine Learning Consequential Decisions



How can we make machine learning better aligned with societal values?

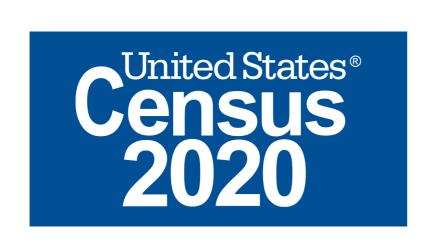
Focus: privacy and fairness

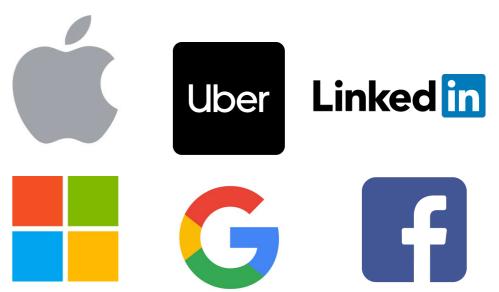
Differential Privacy

Sensitive Data Set (e.g., medical records)

Output Distribution (e.g., noisy statistics)

"An algorithm is differentially private if changing a single record does not alter its output distribution by much." [DN03, DMNS06]





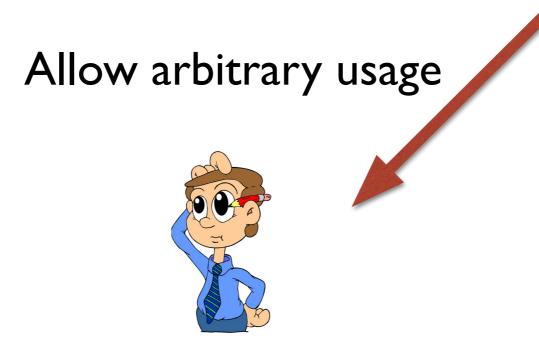
Challenge in Adoption:

How to facilitate non-privacy experts to work with differential privacy?

Differentially Private Synthetic Data

Sensitive data set (e.g. medical records)

Synthetic data set "Fake" data records that preserve important statistical properties



Data Scientist

Privacy-Preserving GANs Support Clinical Data Sharing

[BWWLBBG]

Published in Circulation: Cardiovascular Quality and Outcomes 2019

Data Set

Systolic Blood Pressure Intervention Trial (SPRINT)

• 9,361 patients (3 measurements over 12 periods)

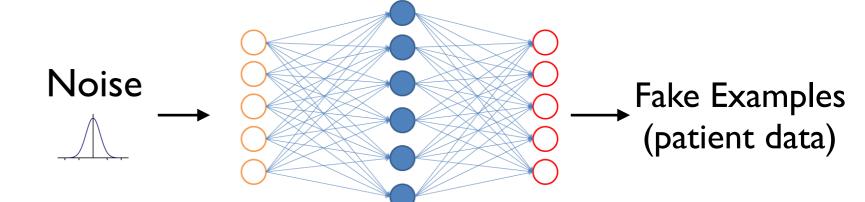
Approach
Generative adversarial nets (GANs)
+ Differential privacy

Generative Adversarial Nets (GANs)

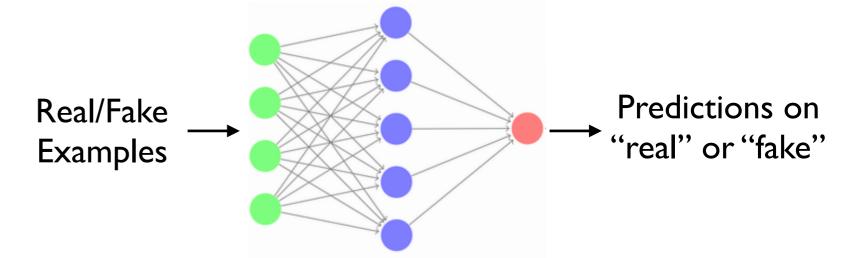
[GPM+14]

2-Player Zero-Sum Game

Generator: mimic the real data

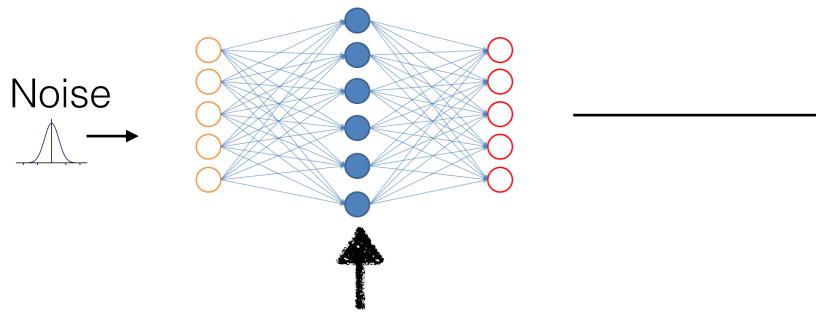


Discriminator: distinguish real and fake data



Private GAN Training [BWW+19]

Real Data

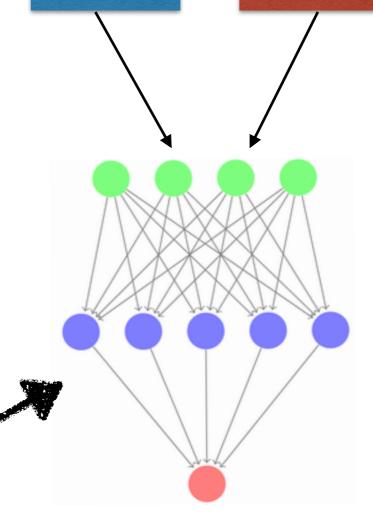


Training Generator:

- Does not directly interact with real data
- Train using standard (non-private) methods (e.g., SGD)

Privately Training Discriminator:

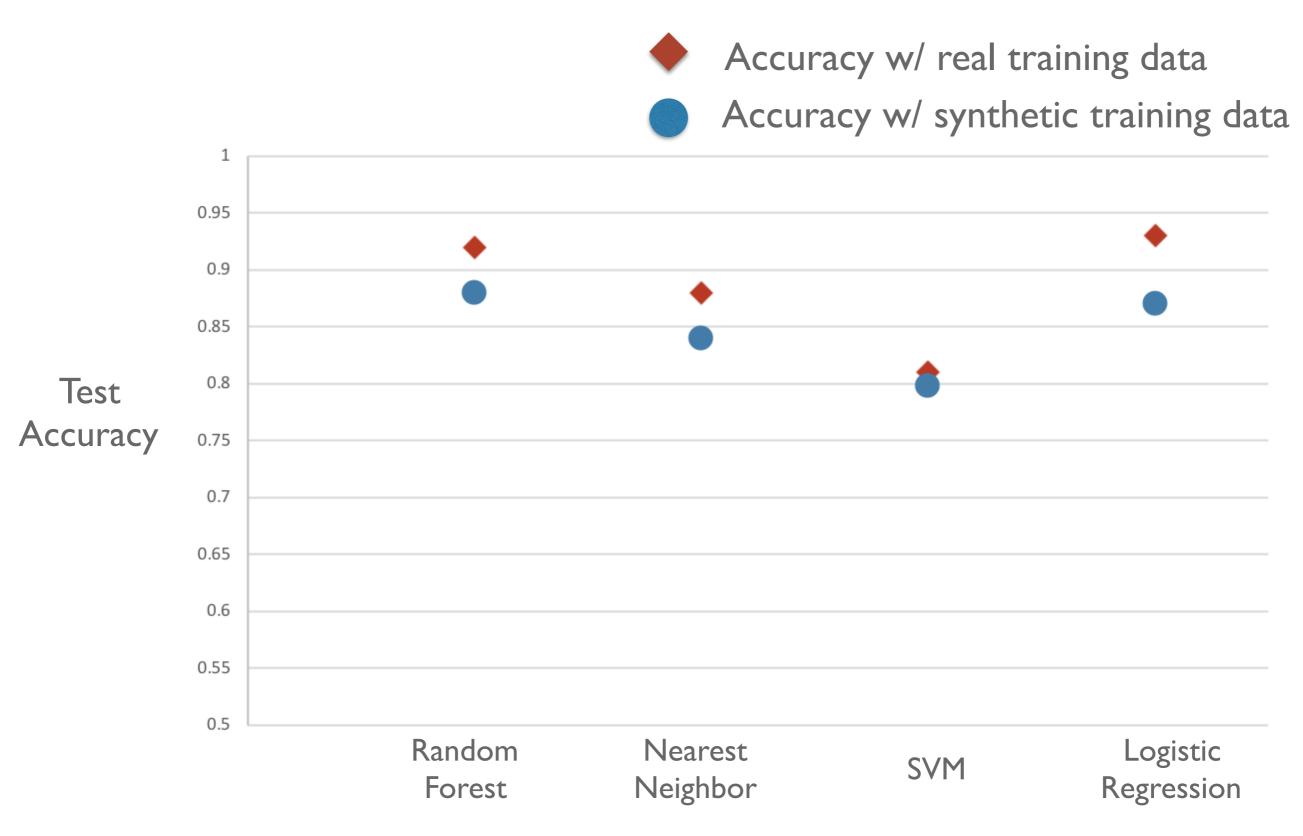
- Interacts with real data
- Train using differentially private SGD method
 - Gradient clipping + Gaussian Perturbation



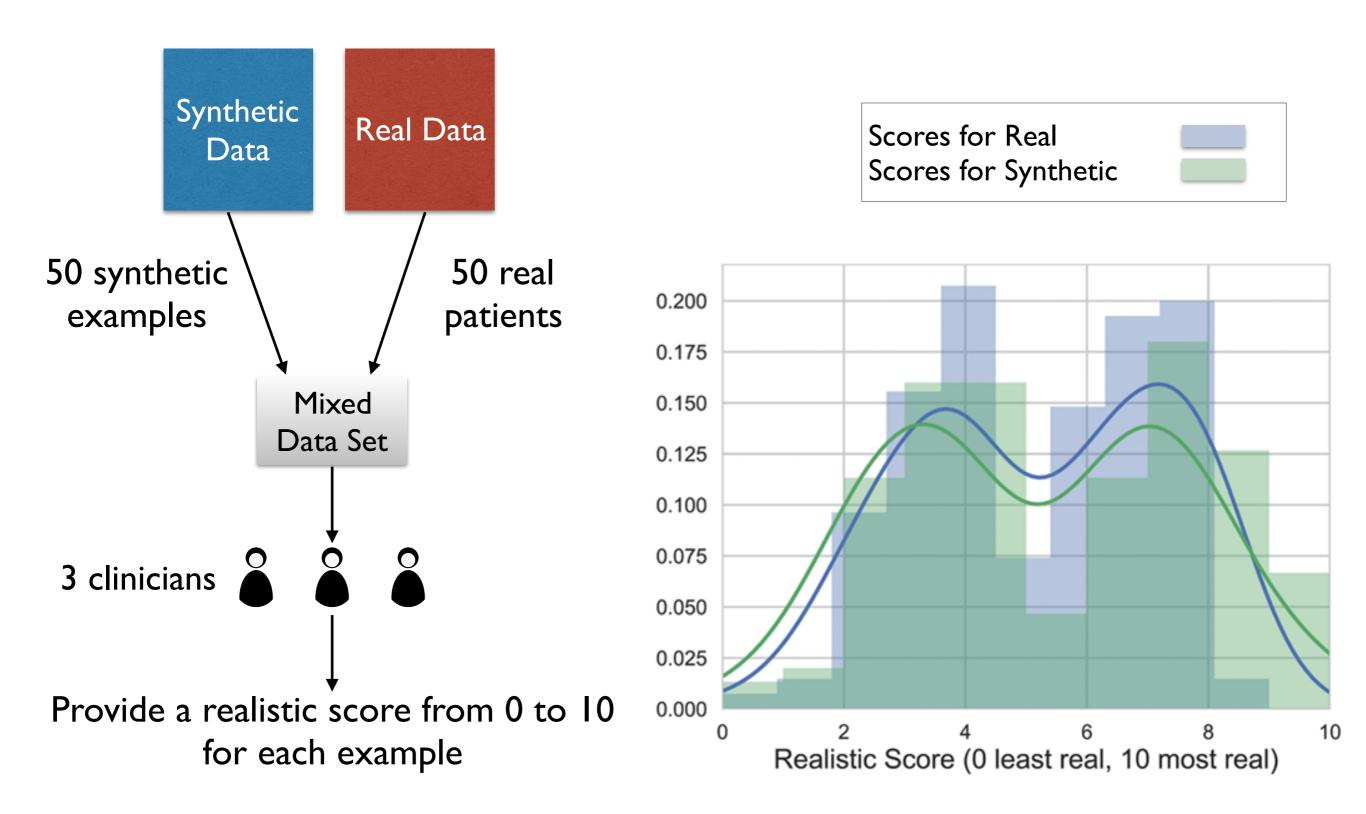
Synthetic

Data

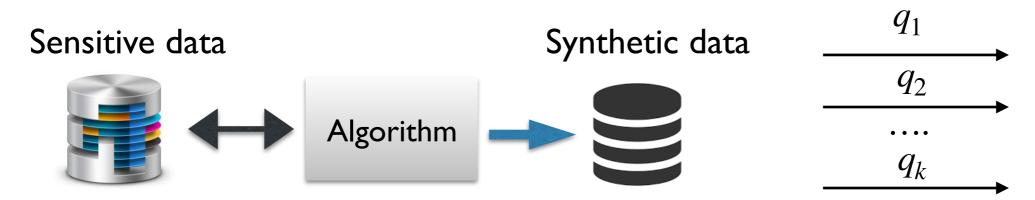
Models Trained on Synthetic v.s. Real Data



Evaluation with Human (Discriminators)



Synthetic Data for Query Release



Statistical queries (e.g., fraction of people who smoke and have lung diseases)

Fast algorithms by leveraging off-the-shelf solvers (e.g., Gurobi, CPLEX)

- [GGHRW] ICML14; [NRW] FOCS19
- [VTBSW] ICML20

Privacy-Preserving Synthetic Data

Steven Wu

zstevenwu.com