Realistic Cyber Ranges & Enabling Machine Learning Within Cybersecurity

Tom Podnar Dustin Updyke

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

> [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution

Carnegie Mellon University Software Engineering Institute Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material was prepared for the exclusive use of Cylab Partners Conference and may not be used for any other purpose without the written consent of permission@sei.cmu.edu.

Carnegie Mellon[®] and CERT[®] are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. DM20-0784

Part I (Tom)

- Who we are and what we do
- The state of cyber ranges today
- Data opportunities

Carnegie Mellon University Software Engineering Institute Using ML in modeling and simulation for cybersecurity training © 2020 Carnegie Mellon University

SEI > CERT > CWD > Realistic Scenario Simulation Team

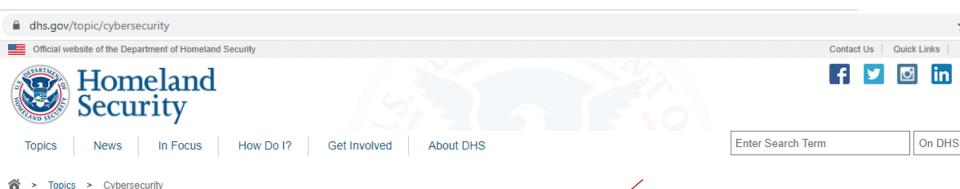
- Architect & deliver realistic cyber warfare exercises
- Persistent production spec high-fidelity environment (aka: realism)
- Security hardened and tuned
- Multiple engagements lasting days to 7+ months
- Participants are worldwide DoD operators

Carnegie Mellon University Software Engineering Institute Using ML in modeling and simulation for cybersecurity training © 2020 Carnegie Mellon University

Exercise as you Fight

Carnegie Mellon University Software Engineering Institute Using ML in modeling and simulation for cybersecurity training \circledast 2020 Carnegie Mellon University

Exercise as you Fight, continued



Carnegie Mellon University Software Engineering Institute

Using ML in modeling and simulation for cybersecurity training © 2020 Carnegie Mellon University

Topics

Academic Engagement

Border Security

Citizenship and Immigration Services

Civil Rights and Civil Liberties

Critical Infrastructure Security

Our daily life, economic vitality, and national security depend on a stable, safe, and resilient cyberspace.

Cyberspace and its underlying infrastructure are vulnerable to a wide range of risk stemming from both physical and cyber threats and hazards. Sophisticated cyber actors and nation-states exploit vulnerabilities to steal information and money and are developing capabilities to disrupt, destroy, or threaten the delivery of essential services.

Cybersecurity

Machine Learning & Cyber Security – Success Stories

- Breach and lateral movement detection and prevention
- Identification of malicious activity and rogue server behaviors
- Malware classification
- Supplement and enhance human security analysis techniques

Using ML in modeling and simulation for cybersecurity training © 2020 Carnegie Mellon University

Machine Learning & Cyber Security – Challenges

- Researchers and engineers face similar challenges to other applications of Machine Learning
- Cyber security is constantly evolving
- Call to Arms Data Scientists and Engineers We need your help!

Using ML in modeling and simulation for cybersecurity training © 2020 Carnegie Mellon University

Machine Learning & Cyber Security – Data Challenges

- Acquiring / Data collection:
 - Harder to get cyber related data no one wants to share
- Training Data
 - How to obtaining the "right" data sets for a specific cyber security issue?
 - Concerns over data quality and whether data sets are relevant
 - Overfitting and under-fitting related problems
- How to enable efficient development and testing of your cyber security ideas and theories?

Machine Learning in Cyber-Security - Problems, Challenges and Data Sets

Idan Amit¹, John Matherly², William Hewlett¹, Zhi Xu¹, Yinnon Meshi¹, Yigal Weinberger¹ ¹Palo Alto Networks

²Shodan

iamit@paloaltonetworks.com, jmath@shodan.io, whewlett@paloaltonetworks.com, zxu@paloaltonetworks.com, vmeshi@paloaltonetworks.com, vweinberge@paloaltonetworks.com

5

Data Sets

We think that the use of machine learning in cybersecurity should change. We also think that the cyber community should help the machine learning community to become more involved in this field.

One of the key obstacles to investigating cyber-security problems is the lack of appro-There are many important priate data sets. cyber-security data sets like Microsoft's malware data set (Ronen et al. 2018), Los Alamos's traffic data set (Turcotte, Kent, and Hash 2017) and EndGame's Ember malware properties data set (Anderson and Roth 2018). However, we feel that there are no suitable data sets that will enable academic researchers to cope with the problems and challenges we listed.

22 Apr 2019

Read the article online here.

SEI > CERT > CWD > Realistic Scenario Simulation Team

- Architect & deliver realistic cyber warfare exercises
- Persistent production spec high-fidelity environment (aka: realism)
- Security hardened and tuned
- Multiple engagements lasting days to 7+ months
- Participants are worldwide DoD operators

Carnegie Mellon University Software Engineering Institute Using ML in modeling and simulation for cybersecurity training © 2020 Carnegie Mellon University

Enabling Machine Learning & Cyber Security Success

- Persistent cyber ranges and resultant data sets:
 - On-demand access that can be tuned/adjusted
 - Cleaner, labeled data and more balanced
 - Can produce large amounts of unclassified data
 - Ability to re-run cyber security events and scenarios as required
- Enables efficient development and testing of your cyber security ideas and theories

Gasoline

Mid-19th century refinery waste product

Almost worthless — thrown away by the barrel and made Ohio's Cuyahoga River flammable

The oil industry managed to turn its worthless waste product into the most highly sought fuel of the entire 20th century

Enabling Machine Learning & Cyber Security Success Types of data sets:

- Blue, red, and white team perspectives and their interactions
- Non player character (NPC) behaviors and actions
- Raw data in any form: JSON, PCAP, Netflow, protocol metadata, etc.
- All data can be cross-correlated w/ cyber related event occurrences

Part II (Dustin)

Customer related ML work...

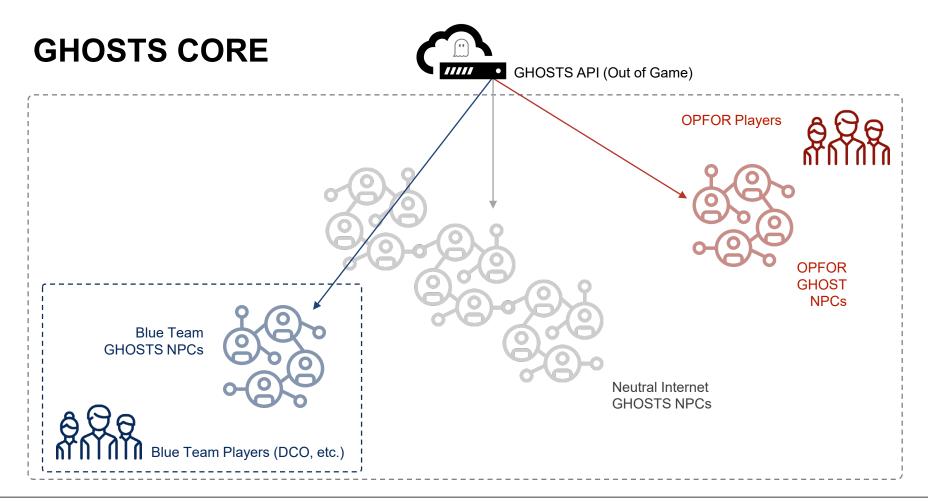
- Large & diverse datasets are a boon for research!
- ...but they also make it hard to get started
- Bonus points: How do we enable other teams?

Using ML in modeling and simulation for cybersecurity training \circledast 2020 Carnegie Mellon University

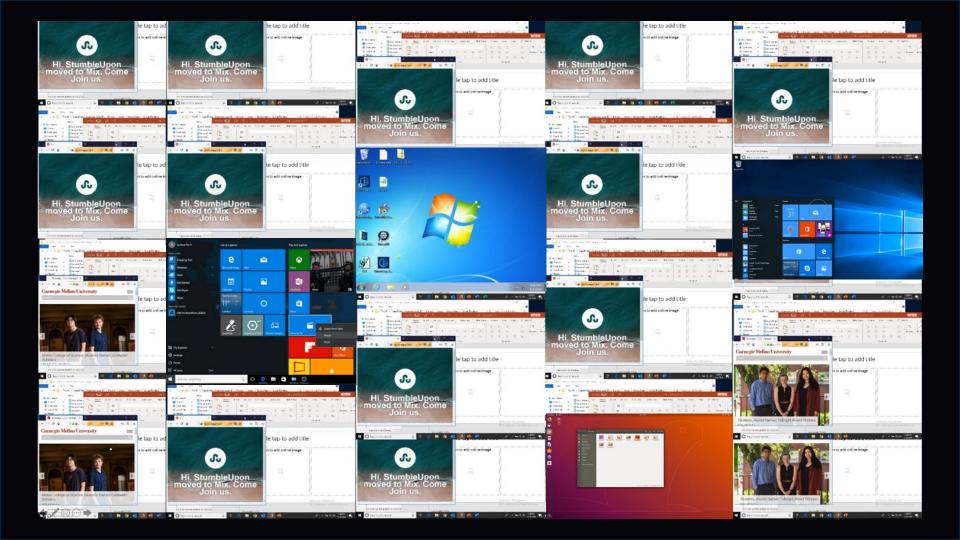
Any exercise contains interactions between:

Player

An active human participant


Non-player character (NPC)

Any character not controlled by a player within the exercise


Carnegie Mellon University Software Engineering Institute

Using ML in modeling and simulation for cybersecurity training © 2020 Carnegie Mellon University

Carnegie Mellon University Software Engineering Institute

Using ML in modeling and simulation for cybersecurity training © 2020 Carnegie Mellon University

🗤 🖈 🖻 🖺 🌣 < Q 🔉 🛛 Last 6 months 🗰 🕻

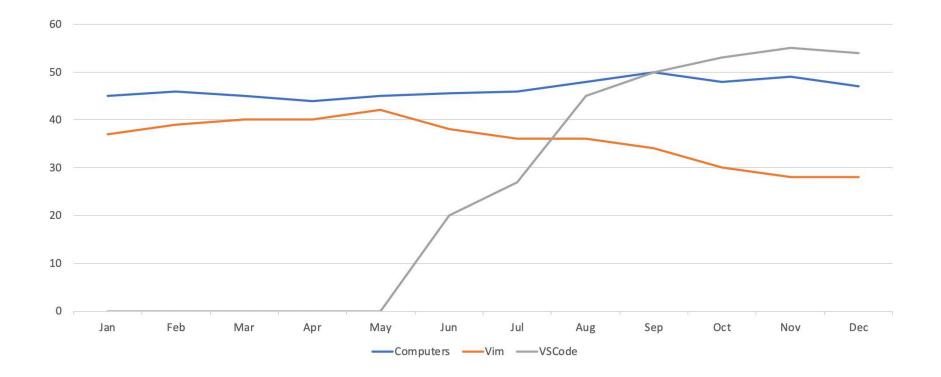
Carnegie Mellon University Software Engineering Institute Using ML in modeling and simulation for cybersecurity training © 2020 Carnegie Mellon University

NPCs Make Decisions Based on their Preferences

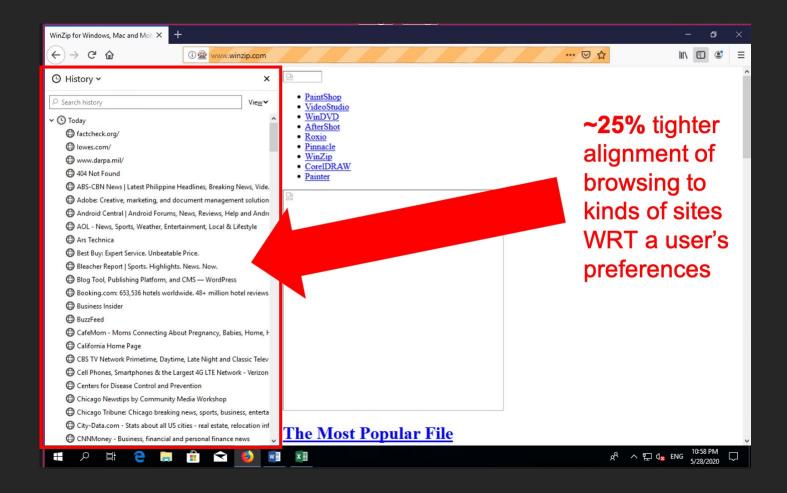
Alexander.Maxey +45 Computers +37 Vim +55 https://news.ycombinator.com +20 K8s +45 Postgresql -10 EMACS +10 //files/users/amaxey

A	В	с	D E	F	G	н	1	J	к	L	м	
username	▼ preference ▼	score 💌										
Alexander.Maxey	Computers	44.5										
Alfredo.Seaman	Kids	44										
Allan.Deal	Recreation	32.5										
Ashley.Munson	Arts	37										
Carissa.Kelso	Reference	37.5										
Cecelia.Nunley	Society	43										
Clinton.Belt	Recreation	36.5										
Conor.Rouse	Reference	52									_	
Dominick.Ragan	News	56										
Donte.Gillette	Home	43.5							-	_		
Emmanuel.Battle	Games	14								-		
Jaron.Lindstrom	Computers	44										
Joey.Crowder	Business	35.5										
Joseph.Mosley	Reference	31								_		
Kacy.Kinder Krystal.Shepherd	News	39										
Lana.Girard	Arts	40.5								-		
Lana.Girard	Society Shopping	40.5					1				_	
Leslie.Richmond	Society	40.5										
1 Racheal.Denney	Computers	37										
2 Rashawn.Dow	Science	54							_			
Rodrigo.Rojas	Recreation	32.5									_	
4 Shayne.Fraley	Science	60										
5 Tarah.Meredith	Shopping	37.5										
6 Tracie.Gamboa	Society	44									-	
7											-	
These were randomly generated from a sample data set of NPC	agents											
			1									
4												

Carnegie Mellon University Software Engineering Institute


Using ML in modeling and simulation for cybersecurity training © 2020 Carnegie Mellon University

ome Insert D	raw Paç	je Layou	t Form	nulas	Data	Rev	iew	View	🖓 Tell me							🖻 Sh	are 🖓	Commer		
1 ‡×~	f_X																			
с	D	E	F	G	н	I	J	к	L	м	N	0	Р	Q	R	S	T	U		
iteration (All)																				
Sum of count Colur Row Labels TArts	nn Labels 💌	Dusiness	Computers	C		Hama	Kids	News	Recreation	D-6	Calanza	Channing	Casiata	Grand Total	Final	Start	Gain			
Alexander.Maxey	79	122	34726	Games 15	Health 34	13	17	News 16	Recreation 39	34	44	Shopping 42	Society 44	35225	99%	79%	20%			
Alfredo.Seaman	65	1122	92	15	34	11	11733	18	37	34	44		36	12275	96%	63%	33%	_		
Allan.Deal	84	135	127	18	34	15	26	14	24611	50	49		38	25250	97%	68%	30%			
Ashley.Munson	21812	123	96	17	39	10	16	27	36	56	42		47	22375	97%	70%	28%			
Carissa.Kelso	81	106	94	15	38	11	18	31	56	30525	30		50	31100	98%	74%	24%			
Cecelia.Nunley	94	100	76	15	28	15	9	19	36	45	28		34547	35050	99%	79%	20%			
Clinton.Belt	89	124	95	16	34	14	22	19	24626	78	49	41	43	25250	98%	68%	29%			
Conor.Rouse	66	94	71	8	22	12	14	20	36	30652	41	29	35	31100	99%	80%	19%			
Dominick.Ragan	62	79	69	11	30	8	18	20530	27	33	32	33	43	20975	98%	75%	23%			
Donte.Gillette	69	102	79	14	36	11991	14	18	41	44	34	46	37	12525	96%	63%	32%			
Emmanuel.Battle	102	174	120	3851	59	17	34	25	66	81	55	59	57	4700	82%	26%	56%			
Jaron.Lindstrom	73	115	34751	15	31	16	16	19	34	33	35	49	38	35225	99%	80%	19%			
Joey.Crowder	91	12146	93	16	33	17	25	23	39	51	43	39	59	12675	96%	64%	32%			
Joseph.Mosley	90	123	104	7	39	7	37	21	57	30478	36		57	31100	98%	72%	26%			
Kacy.Kinder	74	124	96	14	34	19	19	20402	37	44	36		38	20975	97%	68%	29%			
Krystal.Shepherd	21832	138	94	14	31	10	13	16	34	51	48		39	22375	98%	71%	27%	_		
Lana.Girard	103	197	129	20	34	16	33	24	61	70	49		33866	34650	98%	67%	31%	_		
Laurie.Fleming	83	113	85	15	35	14	18	19	44	42	34		50	21100	97%	69%	28%			
Leslie.Richmond	77	111	94	14	30	11	23	21	37	41	32		34507	35050	98%	77%	21%	_		
Racheal.Denney	78	124	34696	14	32	12	27	18	40	51	50		54	35225	98%	78%	21%	_		
Rashawn.Dow	66	97	57	13	20	11	12	18	30	30	27227	31	38	27650	98%	80%	19%			
Rodrigo.Rojas Shayne.Fraley	80 48	118 81	113 58	21 11	38 17	15 12	27 13	26 7	24619 23	56 49	46 27267	37 36	54 28	25250 27650	98%	68% 81%	30% 17%	_		
Shayne.Fraiey Tarah.Meredith	48	128	58	21	35	12	29	20	23 46	49 53	2/26/		28 42	27650	99%	68%	30%			
Tracie.Gamboa	91	128	62	13	26	5	29	19	40	65	39	20516	34522	35050	97%	78%	21%			
Grand Total	45,466	14,998	106,160	4,203	821	12,294	12,240	41,390	74,747	92,749	55,426	42,037	138,369	640,900	5070	,3/6	21/0			
	.5,.50		100,200	,						52,135				,				_		
INTRO	USERS A		0 0/	-	WOF P	ANDOM			NSE PREF			NSE PRE	- 0	02 BROWSE	DAND	003 BROWSE	DDEE	+		


Carnegie Mellon University Software Engineering Institute

Using ML in modeling and simulation for cybersecurity training © 2020 Carnegie Mellon University

An Agent's Preference Over Time

Using ML in modeling and simulation for cybersecurity training © 2020 Carnegie Mellon University

Carnegie Mellon University Software Engineering Institute

Using ML in modeling and simulation for cybersecurity training © 2020 Carnegie Mellon University

{ Known Unknowns }

ML for coordinated attacks & defense

•ML to detect network anomalies/rouge events

Analysis of replayed rogue events

(this)

Carnegie Mellon University Software Engineering Institute Using ML in modeling and simulation for cybersecurity training © 2020 Carnegie Mellon University

Takeaways

- 1. All data has ML potential
- 2. ML projects beget larger & more complex projects
- 3. Start simple (even for the most daunting datasets)
- 4. Output of a project feeds the next