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Classic Multi-armed Bandits

R1 R2 RK
0 0 

o Unknown reward distributions

o Goal: Maximize Cumulative Reward
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Classic Multi-armed Bandits
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o Unknown reward distributions

o Equivalent Goal: Min. Cumulative Regret
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Application to recommendation system

Anonymous user enters the system

Maximize cumulative reward by sequentially recommending available movies to entering users 
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Classic Multi-armed Bandits

R1 R2 RK

o Algorithms: UCB [Auer at el], Thompson Sampling [Thompson], KL-

UCB [Bubeck et al], etc.

o Expected Regret is

LIMITATION: Rewards assumed to be independent across arms

6



Variants for Personalized Recommendations 
Contextual Bandits

Context vector θ (known)

Weight vector w1 (unknown)

Reward w1
T θ Reward wK

T θ

[Li et al, Agarwal et al, and many other works] 7



Variants for Personalized Recommendations 
This work: Structured Bandits

Context vector θ (unknown, 
user not sign in)

Reward μ1 (θ) Reward μK (θ)
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How do we know the mean reward functions μ(.)?

o Controlled user studies for different types of users
o Using contextual information from a previous campaign

Context vector θ (unknown)
For eg. Age/Profession

Reward μ1(θ) Reward μK(θ)
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The Structured Bandit Framework

o There is a fixed unknown parameter lies 𝜃𝜃∗ in a known set Θ
o No restrictions on the reward functions 𝜇𝜇𝑘𝑘(𝜃𝜃)
o θ can be continuous, or a vector

GOAL: Maximize cumulative reward

For eg.
Age/Income/Profession

Context of the 
user (unknown):

Mean Reward 
Functions (known)
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Example

Hidden context 
𝜃𝜃∗ = 3
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Example

Suppose we choose Arm 1: Receive a random reward with mean 2.5

Hidden context 
𝜃𝜃∗ = 3
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Overview of Our Algorithm

1) Estimating a confidence set �Θ𝑡𝑡  for 𝜃𝜃 ∗  (theta hat t)

2) Remove �Θ𝑡𝑡 -non-competitive Arms for step t (theta hat t)

3) Play one of �Θ𝑡𝑡 -competitive arms using any classic bandit 
algorithm (theta hat t)
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Step 1: Estimating a Confidence set Θ�𝑡𝑡
Theta hat t

o Obtain the empirical mean  of each arm k using its 
samples until time

o The confidence set is constructed as follows
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Step 1: Estimating a Confidence set Θ�𝑡𝑡
theta hat t
o Obtain the empirical mean  of each arm k using its 

samples until time t
o The confidence set is constructed as follows
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Step 2: Remove Θ�𝑡𝑡 -non-competitive Arms
theta hat t 

o For �Θ𝑡𝑡 = [1.5,4.5], then Arm 3 cannot be the best arm since

𝜇𝜇𝑘𝑘 𝜃𝜃 < max
𝑙𝑙∈{1,2 ..𝐾𝐾}

𝜇𝜇𝑙𝑙 𝜃𝜃 ∀𝜃𝜃 ∈ �Θ𝑡𝑡

o We say that Arm 3 is �𝛩𝛩𝑡𝑡-non-competitive and focus on arms 1 & 2
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Step 3: Use any classic bandit algorithm

o Options: UCB, Thompson sampling, KL-UCB, etc.
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Performance comparison with Classical Bandits

Regret upper bound of classic UCB/TS

𝑅𝑅𝑅𝑅𝑔𝑔𝑈𝑈𝑈𝑈𝑈𝑈 𝑇𝑇 = 𝐾𝐾 − 1 × 𝑂𝑂(log𝑇𝑇)

Each sub-optimal arm pulled 𝑂𝑂(log𝑇𝑇) times

Regret upper bound for UCB-C/TS-C

𝑅𝑅𝑅𝑅𝑔𝑔𝑈𝑈𝑈𝑈𝑈𝑈−𝑈𝑈 𝑇𝑇 = (𝐶𝐶) × 𝑂𝑂(log𝑇𝑇) + 𝑂𝑂(1)

Only C competitive sub-optimal arms are pulled 𝑂𝑂(log𝑇𝑇) times, where 
C <= K-1. C can even be zero!
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Simulations

Rewards ∼
𝑁𝑁(𝜇𝜇𝑘𝑘 𝜃𝜃∗ , 4)

𝜃𝜃∗ = 0. 5
𝐶𝐶 = 0

𝜃𝜃∗ = 1.8
𝐶𝐶 = 1

𝜃𝜃∗ = 2.8
𝐶𝐶 = 2 22



Experiments on the MovieLens Dataset

o Dataset has 1M ratings for 3883 movies by 6040 users

o Movies have 18 different genres

o We classify users based on θ = (age, occupation) pair

o Mean rewards learnt on 50% of the dataset

GOAL: Find the right movie genre for an unknown user type
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Experiments on MovieLens

𝜃𝜃∗ = 18-25 year old 
college students

𝜃𝜃∗ = 25-34 year old 
executives
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Key Takeaways

o Structured bandit framework allows us to provide
recommendations without knowing context information apriori

o Only some of the sub-optimal arms are pulled O(log T) times, and
non-competitive arms are pulled O(1) times leading to significant
empirical advantage
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