On the Susceptibility to Adversarial Examples Under Real-world Constraints

Lujo Bauer

Professor, Electrical & Computer Engineering + Computer Science

With: Keane Lucas, Clement Fung, Weiran Lin, Mahmood Sharif, Mike Reiter (UNC), ...

September 2020

Attacks and Defenses for *Practical* Uses of ML

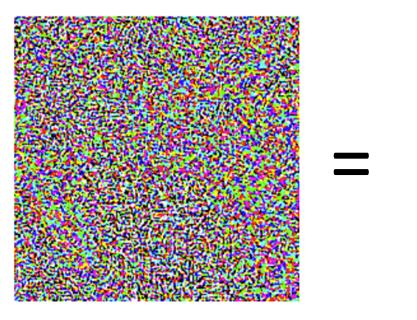
- Face recognition (previous but very cool)
- Malware detection (ongoing; some updates)
- Anomaly detection in industrial control systems (new)

gie Mellon University y and Privacy Institute

ML Algorithms Are Fragile

"Panda"

+ 0.007x



"Gibbon"

Reiter CCS '16, arXiv '17, TOPS Can an Attacker Fool ML Classifiers?

Fooling face recognition (e.g., for surveillance, access control)

What is the attack scenario?

Does scenario have constraints...

... on how attacker can manipulate input?

... on what the changed input can look like?

Defender / beholder doesn't notice attack (as measured by a user study)

[Sharif, Bhagavatula, Bauer, '19]

Can change physical objects, not pixels

Can't control camera position, lighting

Security and Privacy Institute

Fooling Face Recognition Classifiers x2

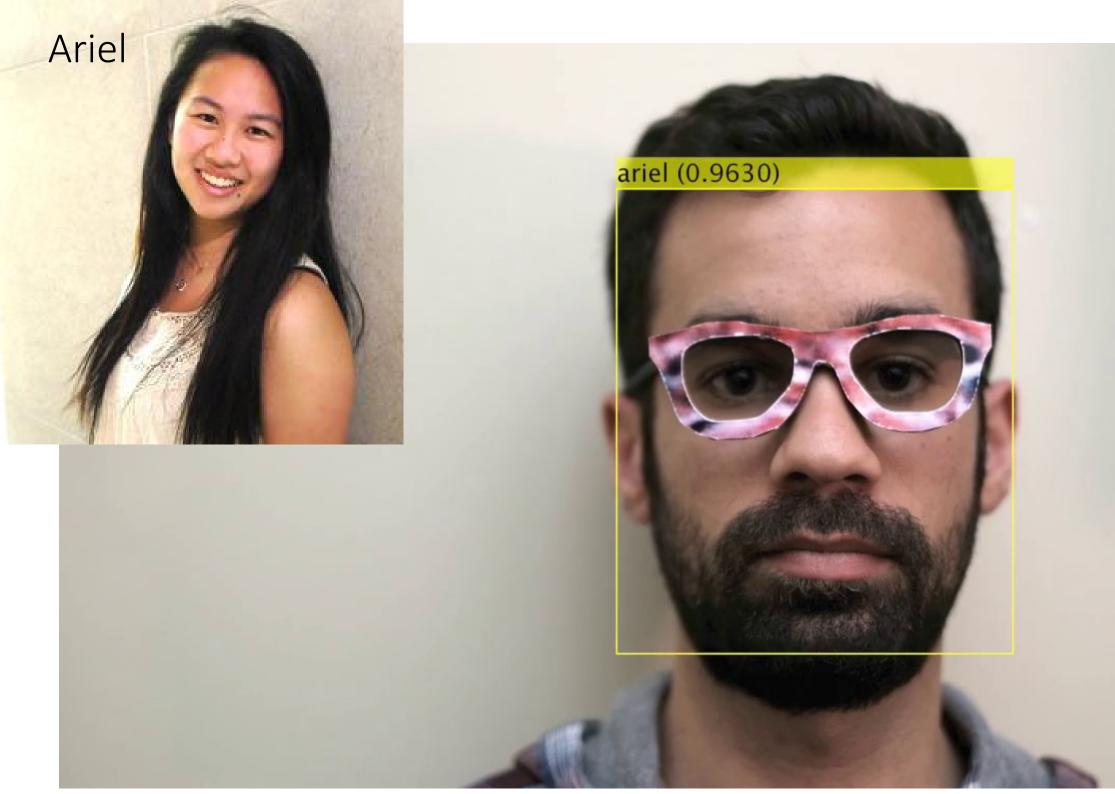
1. Traditional gradient descent, augmented to account for:

- Changing pixels only on eyeglasses
- Smooth pixel transitions
- Restricting changes to printable colors
- Classification over multiple images of attacker

OR

- 2. Train adversarial eyeglass generator
 - 1. Train eyeglass generator
 - 2. Additionally train to generate adversarial eyeglasses

gie Mellon University y and Privacy Institute



[Sharif, Lucas, Bauer, Reiter, Shintre arXiv '19]

Can an Attacker Fool ML Classifiers?

Face recognition



Attacker goal: evade surveillance, fool access-control mechanism

Input: image of face

Constraints:

- Can't precisely control camera angle, lighting, pose, ...
- Attack must be *inconspicuous*

Malware detection Attacker goal: bypass malware

detection system

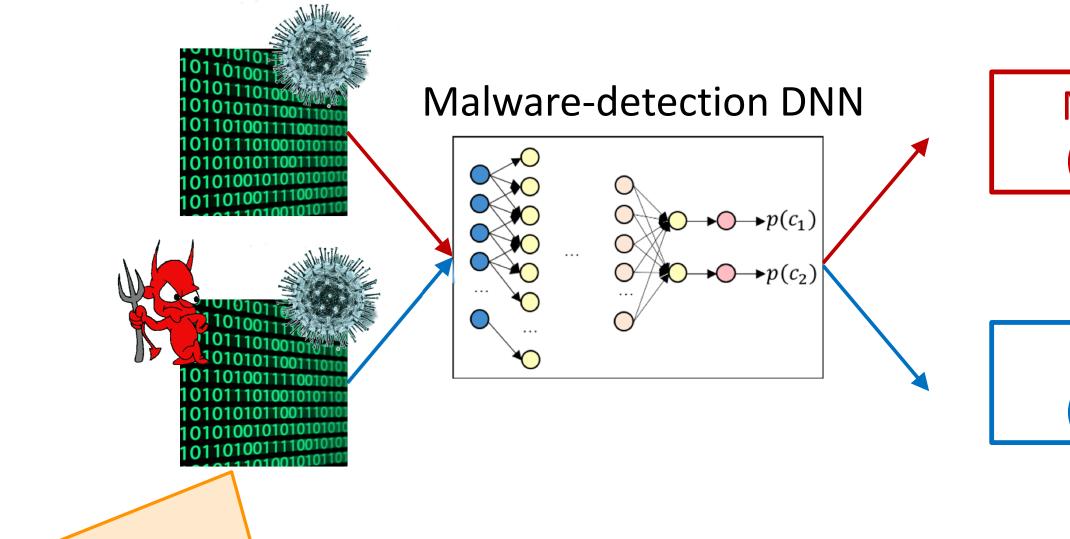
Input: executable in binary format

Constraints:

- Must be functional malware
- Changes to executable must not lacksquarebe easy to remove

Very different constraints! \Rightarrow Attack method does not carry

Hypothetical Attack on Malware Detection



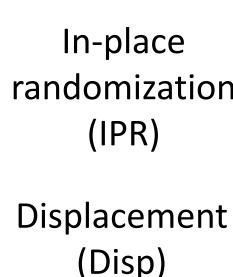
- 1. Must be functional malware
- 2. Changes to binary must not be easy to remove

Malware (p=0.99)

Benign (p=0.99)

Attack Building Block: Binary Diversification

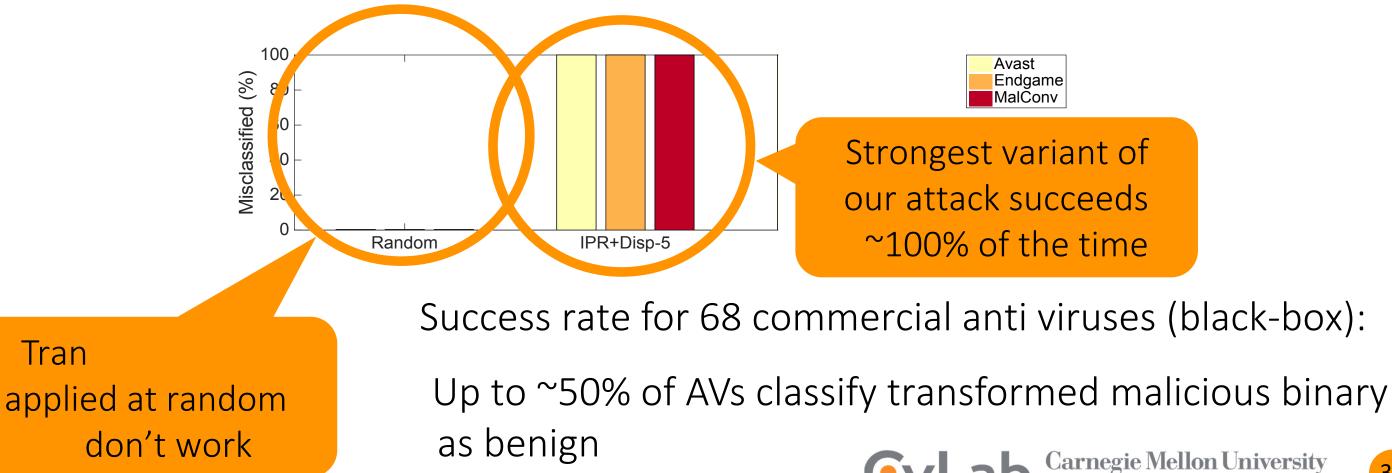
- Originally proposed to mitigate return-oriented programming [3,4]
- Uses transformations that preserve functionality:
 - 1. Substitution of equivalent instruction
 - **Reordering instructions** 2.
 - Register-preserving (push and pop) randomization 3.
 - Reassignment of registers 4.
 - Displace code to a new section 5.
 - Add semantic nops 6.



Transforming Malware to Evade Detection

Experiment: 100 malicious binaries, 3 malware detectors (80-92% TPR)

Success rate (success = malicious binary classified as benign):



Can an Attacker Fool ML Classifiers?

Face recognition

Attacker goal: evade surveillance, fool access-control mechanism

Input: image of face

Constraints:

- Can't precisely control camera angle, lighting, pose, ...
- Attack must be *inconspicuous*

Malware detection

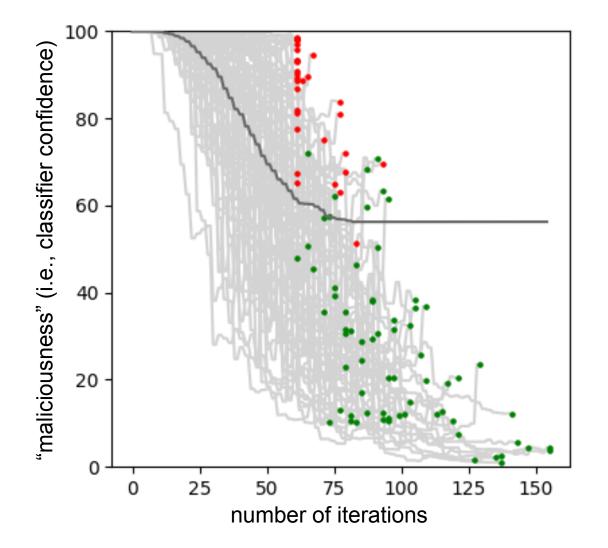
Attacker goal: bypass malware detection system

Input: malware binary

Constraints:

- Must be functional malware
- Changes to binary must not be easy to remove

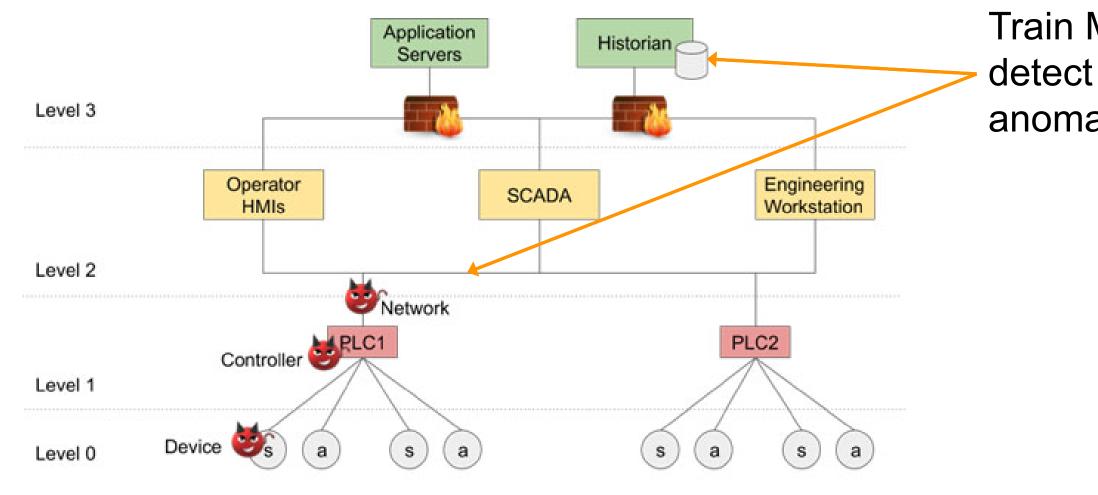
Can an Attacker Do Even Better?



Unfortunately, yes!

Natural question: can we *learn* what distinguishes more successful attack attempts from less successful ones?

ML-based Anomaly Detection in Industrial Control Systems



Train ML to anomalies

But... in ICS the Cost of Errors Is Very High

- Shutdown because of detected anomaly can take hours or days to reverse \bullet
- Hence: explanations are critical! •
 - For both the benign case and the adversarial case
 - Operator needs explanation before reacting to detected anomaly
- On-going work: lacksquareadapt approaches to explaining AI decisions to non-image, time-series data

On the Susceptibility to Adversarial Examples Under Real-world Constraints

- Practical applications of machine learning may be susceptible to attack \bullet
- Defenses are on the way \bullet

Lujo Bauer lbauer@cmu.edu

