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Attacks and Defenses for 
Practical Uses of ML 
• Face recognition  (previous but very cool)

• Malware detection  (ongoing; some updates)

• Anomaly detection in industrial control systems  (new)
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ML Algorithms Are Fragile 

“Panda” 

+ 0.007x = 

3 

“Gibbon” 



Can an Attacker Fool ML Classifiers? 
[Sharif, Bhagavatula, Bauer, 

Reiter CCS ’16, arXiv ’17, TOPS 
’19] 

Fooling face recognition (e.g., for surveillance, access control) 

What is the attack scenario? 
Does scenario have constraints… 

… on how attacker can manipulate input? 

 

… on what the changed input can look like? 

Can change 
physical objects, 

not pixels 

Can’t control 
camera position, 

lighting 

Defender / beholder doesn’t notice attack 
(as measured by a user study) 
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Fooling Face Recognition Classifiers  x2 

1. Traditional gradient descent, augmented to account for:
• Changing pixels only on eyeglasses
• Smooth pixel transitions
• Restricting changes to printable colors
• Classification over multiple images of attacker

OR 

2. Train adversarial eyeglass generator
1. Train eyeglass generator
2. Additionally train to generate adversarial eyeglasses
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Can an Attacker Fool ML Classifiers? 
[Sharif, Lucas, Bauer, Reiter, Shintre arXiv ’19] 

Face recognition 
Attacker goal: evade surveillance, 
fool access-control mechanism 

Input: imag  e of face 

Constraints: 

• Can’t precisely control camera
angle, lighting, pose, …

• Attack must be inconspicuous

Malware detection 
Attacker goal: bypass malware 
detection system 

Input: executable in binary format 

Constraints: 

• Must be functional malware

• Changes to executable must not
be easy to remove

Very different constraints!  Attack method does not carry 
over 



Hypothetical Attack on Malware Detection 

Malware-detection DNN Malware 
(p=0.99) 

Benign 
(p=0.99) 

30 

1. Must  be functional malware
2. Changes to binary must not be easy  to remove



 

 

 

Attack Building Block: Binary Diversification 

• Originally proposed to mitigate return-oriented programming [3,4]

• Uses transformations that preserve functionality:
1. Substitution of equivalent instruction
2. Reordering instructions
3. Register-preserving (push and pop) randomization
4. Reassignment of registers
5. Displace code to a new section
6. Add semantic nops

In-place
randomization 

(IPR)

Displacement 
(Disp) 

[3] Koo and Polychronakis, “Juggling the Gadgets.” AsiaCCS ’16
[4] Pappas et al., “Smashing the Gadgets.” IEEE S&P ’12 31 



Transforming Malware to Evade Detection 

Experiment: 100 malicious binaries, 3 malware detectors (80-92% TPR) 

Success rate (success = malicious binary classified as benign): 
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euk-5

Strongest variant of 
our attack succeeds 

~100% of the time 

Success rate for 68 commercial anti viruses (black-box): 

Up to ~50% of AVs classify transformed malicious binary 
as benign 



 

 

 

Can an Attacker Fool ML Classifiers?  Yes

Face recognition 
Attacker goal: evade surveillance, 
fool access-control mechanism 

Input: image of face 

Constraints: 

• Can’t precisely control camera
angle, lighting, pose, …

• Attack must be inconspicuous

Malware detection 
Attacker goal: bypass malware 
detection system 

Input: malware binary 

Constraints: 

• Must be functional malware

• Changes to binary must not
be easy to remove
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Can an Attacker Do Even Better?
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Unfortunately, yes! 

Natural question: can we learn 
what distinguishes more 
successful attack attempts from 
less successful ones? 
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ML-based Anomaly Detection
in Industrial Control Systems

Train ML to 
detect 
anomalies 
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But… in ICS the Cost of Errors Is Very High 

• Shutdown because of detected anomaly can take hours or days to reverse

• Hence: explanations are critical!
• For both the benign case and the adversarial case
• Operator needs explanation before reacting to detected anomaly

• On-going work:
adapt approaches to explaining AI decisions to non-image, time-series data
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On the Susceptibility to Adversarial Examples 
Under Real-world Constraints 
• Practical applications of machine learning may be susceptible to attack

• Defenses are on the way

Lujo Bauer 
lbauer@cmu.edu 
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