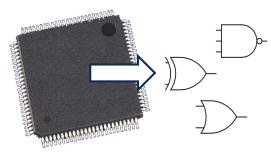
Hardware Redaction via Designer-Directed Fine-Grained eFPGA Insertion – Fall 2020

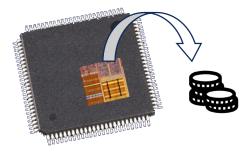
Ken Mai

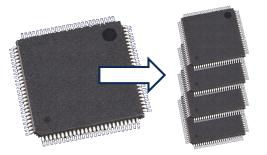
Electrical and Computer Engineering


Shrinking Number of Leading-Edge IC Fabs

90nm	65nm	45/40nm	32/28nm	22/20nm	16/14nm	10nm
(2003)	(2005)	(2007)	(2009)	(2012)	(2015)	(2018)
Intel TSMC Samsung Global Foundries STMicro UMC SMIC IBM Toshiba AMD TI Fujitsu Panasonic Renesas NEC Freescale Infineon Sony	Intel TSMC Samsung Global Foundries STMicro UMC SMIC IBM Toshiba AMD TI Fujitsu Renesas NEC Freescale	Intel TSMC Samsung Global Foundries STMicro UMC SMIC IBM Toshiba AMD TI Fujitsu Panasonic		Intel TSMC Samsung Global Foundries STMicro	anufacturing	Capability

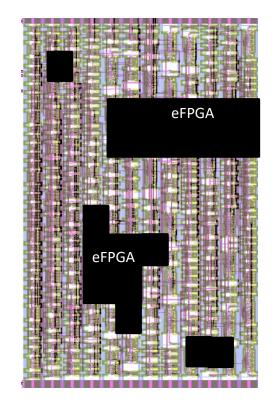
- Few suppliers are committed to advancing to 10nm node and beyond
- Dominance of fabless semiconductor model \rightarrow 3rd parties fab


Security Threats from Untrusted Fab


Reverse Engineering

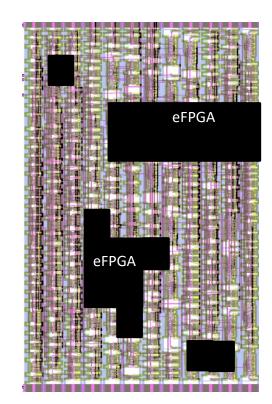
Trojan Insertion

IP Theft

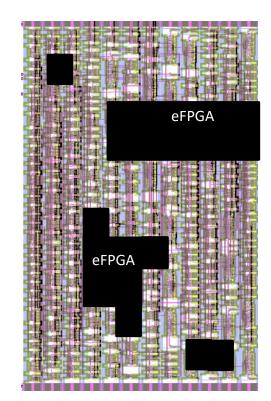

Counterfeiting

Carnegie Mellon University Security and Privacy Institute

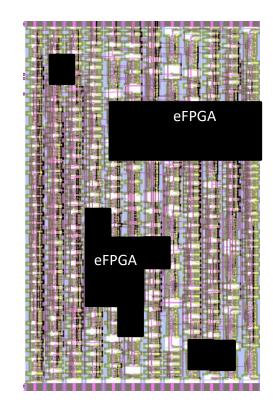
Combat untrusted fab and reverse engineering


- Designer-directed
- Fine-grained
- Redaction
- Using soft eFPGA

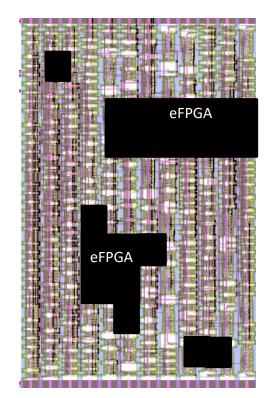
Combat untrusted fab and reverse engineering

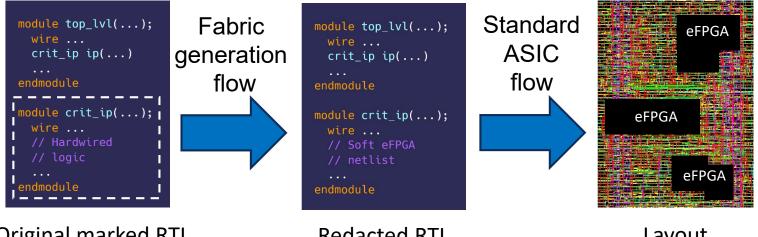

- Designer-directed
 - Designer knows what IP they want to conceal
 - Not reliant on tool to choose what is redacted
- Fine-grained
- Redaction
- Using soft eFPGA

Combat untrusted fab and reverse engineering


- Designer-directed
- Fine-grained
 - Can redact from a single gate to a macro block
 - Intercalated with rest of design \rightarrow low overhead
- Redaction
- Using soft eFPGA

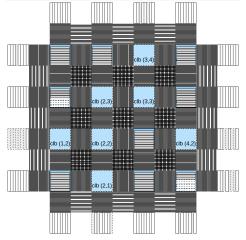
Combat untrusted fab and reverse engineering


- Designer-directed
- Fine-grained
- Redaction
 - Complete removal of sensitive IP
 - Recast as reconfigurable block
- Using soft eFPGA


Combat untrusted fab and reverse engineering

- Designer-directed
- Fine-grained
- Redaction
- Using soft eFPGA
 - No custom circuits or layout → ease of portability
 - Synthesized using standard cell library along with rest of the design

Designer-view CAD Flow


Original marked RTL

Redacted RTL

Layout

4x4 Tile eFPGA Fabric Architecture

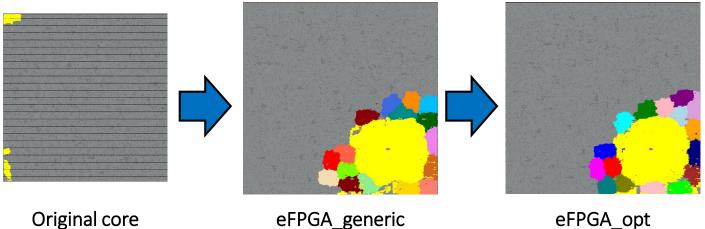
Parameter	Value
Number of tiles	16 (4x4)
Channel width	44
Number of LUTs per CLB	8
LUT size	4
Crossbar connectivity	50%
Wire length	4
Switch block connectivity	3
Switch block type	Wilton
Input connectivity (Fc_{in})	0.2
Output connectivity (Fcout)	0.1

- Open-source island-style eFPGA architecture (Univ. Toronto)
- eFPGA RTL spawned from Chisel scripts
- Synthesized using standard cell synthesis tool flow
- eFPGA design silicon proven in 65nm, 28nm, 22nm, and 16nm

urnegie Mellon University curity and Privacy Institute

11

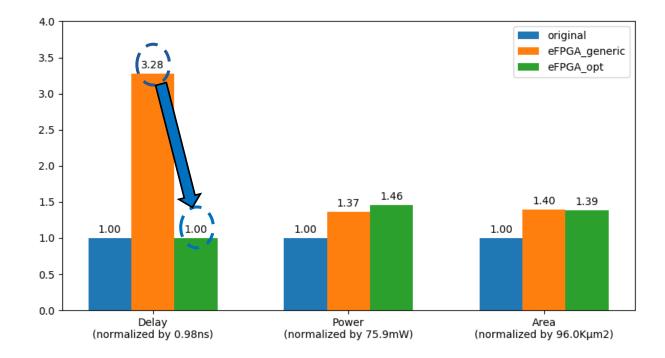
Test Circuit 1: GPS P-Code Generator


- MIT Lincoln Labs Common Evaluation Platform (CEP)
- Generates C/A code, P-code, and L-code
- P-code generator obfuscated
 - Length of the code
 - Position of the LFSR taps
 - Initialization value of the LFSR

P-code generator	C/A code generator	
L-code ge	AXI	

GPS core module diagram

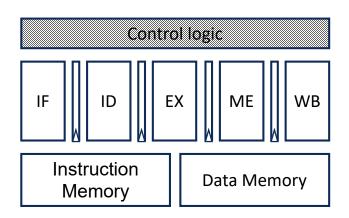
GPS P-Code Generator Layout



 (0.096mm^2)

eFPGA_generic (0.134mm²) eFPGA_opt (0.133mm²)

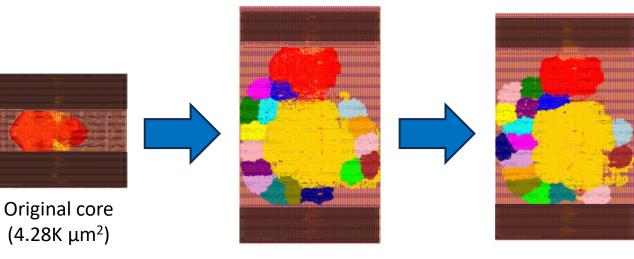
GPS VLSI Metrics


Test Circuit 2: RISC-V CPU

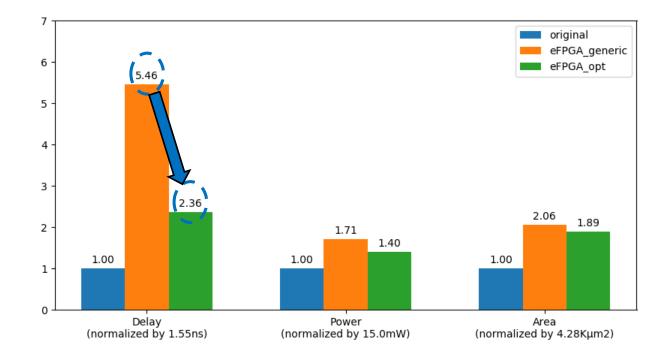
• RV32I architecture

• 5-stage pipelined

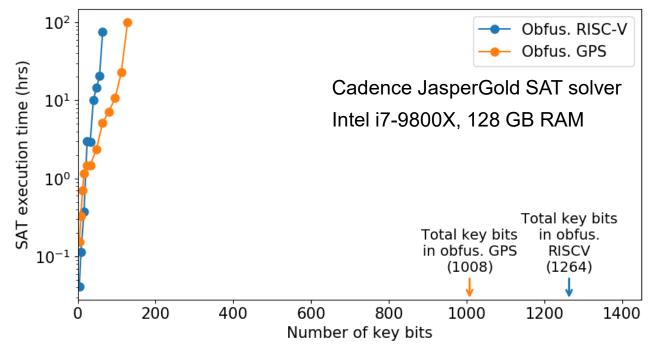
• 16 KB separate I and D memory


- Control logic obfuscated
 - Low percentage of the gates, and renders the entire CPU unusable

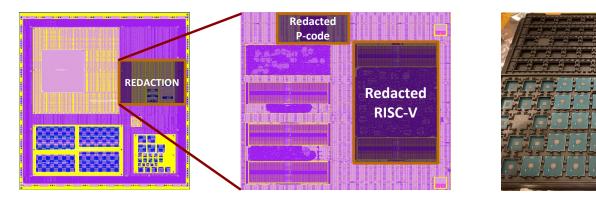
RISC-V CPU module diagram


RISC-V Layout

eFPGA_generic (8.80K μm²) eFPGA_opt (8.08 μm²)



RISC-V VLSI Metrics


SAT Attack Results

Essentially requires attacker to generate eFPGA configuration bitstream without any information about design structure

Testchips

- Testchips in multiple process technology nodes
 - 28nm planar MOSFET and 22nm finFET technologies
 - Testchips functional at speed
- Soft eFPGA enables fast easy porting between processes
 - eFPGA fabric implemented using standard cells
 - No custom process-specific layout or circuit design

Carnegie Mellon University Security and Privacy Institute

Status and Next Steps

Status

- CAD tool flow from original RTL to redacted RTL completed
- Testchips at multiple process nodes fully functional at speed

Next steps

- Techniques for reducing eFPGA VLSI overheads \rightarrow latch-based storage
- Enhance eFPGA with block-RAMs and custom macros
- Improve attack infrastructure and conduct longer run-time experiments

