
Using Machine Learning to Improve Security Analysis of
Source Code
© 2020 Carnegie Mellon University

Using Machine Learning to
Improve Security Analysis of
Source Code

Mark Sherman
Sept 23, 2020
Cylab Partners Conference

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[[DDIISSTTRRIIBBUUTTIIOONN SSTTAATTEEMMEENNTT AA]] A Apprpprovoved ed fforor publ publiicc r releleasease e
and unland unliimmiitted died dissttrriibutbutiion.on. 1

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other
documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM20-0770

2Using Machine Learning to Improve Security Analysis of
Source Code
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Research Projects at SEI/
CERT

Source Code as Natural Language
Combining Source Code Analyzers
Automated Source Code Repair

3Using Machine Learning to Improve Security Analysis of
Source Code
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Research Teams

PIs
Lori Flynn
Will Klieber
Carson Sestili

Team members
Jennifer Burns
Matt Churilla
Zachary Kurtz
Jiyeon Lee
Derek Leung
Guillermo Marce-
Santurio
Ruben Martins (SCS)
Mike McCall

Team members (cont)
Ebonie McNeil
Richard Qin
Will Snavely
Ryan Steele
Robert Stoddard
David Svoboda
Nathan VanHoudnos
Joseph Yankel
David Zubrow

4Using Machine Learning to Improve Security Analysis of
Source Code
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Finding Code Defects – ML that Considers
Source Code as Natural Language

Analyze Source Code for
Insecure Coding
• Supplements Compiler-style

Checking
• Treats Programs Like Natural

Language

Sources: Carson D. Sestili, William S. Snavely, Nathan M. VanHoudnos, Towards security defect prediction with AI, Sep 12,
2018, read the article online here.

5Using Machine Learning to Improve Security Analysis of
Source Code
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

https://arxiv.org/abs/1808.09897

Finding Code Defects Using Machine
Learning

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

Read the L. Flynn publications at SEI Digital Library here.

6Using Machine Learning to Improve Security Analysis of
Source Code
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

https://resources.sei.cmu.edu/library/author.cfm?authorid=31216

 Introduction and Integration of Machine
Learning

Earlier:
Aggregate tools

• Combine multiple
tool outputs

• Assist analyst with
combining outputs
and tracking
decisions

FY16: Explore ML

• Limited tools
• Limited error types
• Limited training data
• Limited features

FY17: Expand
training data

• Common lexicon and
labeling process

• Synthetic generation
with test suites

• Increased feature
space

FY18 -19: Expand
analysis tools
and processes

• Alternative tools for
generating
measurements

• Alternative feature
extraction

• Alternative ML
algorithms, e.g.,
active learning

FY20 -21:
Expansion and
integration into

DevSecOps

• CI/CD data sources
• Rapid feedback

 [DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Using Machine Learning to Improve Security Analysis of
Source Code
© 2020 Carnegie Mellon University

7

Automated Code Repair (ACR) Tool as a
Black Box

Input: Buildable codebase

Output: Repaired source
code that is still human-
readable and maintainable.

We currently support C code.
Support for C++ can likely be
added without too much
difficulty.

ACR Tool

printf(
name);

printf(
"%s",
name);

Read Will Klieber, Automated Code Repair to Ensure Memory Safety, Feb 24, 2020, here.

8Using Machine Learning to Improve Security Analysis of
Source Code
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

https://insights.sei.cmu.edu/sei_blog/2020/02/automated-code-repair-to-ensure-memory-safety.html

Why repair of source code instead of as a
compiler pass?

Repair of source code Repair as a compiler pass

Easily audited (if desired). Must trust the tool.

Repairs can easily be tweaked to
improve performance, if necessary.

Difficult to remediate performance
issues caused by repair.

Changes to source code are frequent
and easily handled.

Changes to the build process may be
more difficult and error-prone.

Okay to do slow, heavy-weight static
analysis; produces a persistent artifact.

Slowing down every test build is not
okay.

9Using Machine Learning to Improve Security Analysis of
Source Code
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Source Code Repair Pipeline

 map mapSource
Code

1. Record
Source↔AST

mapping

Abstract
Syntax Tree

(AST)

2. Record
AST↔IR
mapping

Intermediate
Representation (IR)

3. Perform analysis
and repair at IR

level

4. Map repaired
IR back to AST

5. Map repaired
AST back to source

10Using Machine Learning to Improve Security Analysis of
Source Code
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Challenges

• In translating repairs from AST to source, the C
preprocessor is main difficulty.
- Repairs to macro uses
- Repairs to #included code
- Conditional-compilation directives (#ifdef, #endif, etc.) inside

expressions

• Considerations of whitespace
• The C preprocessor can conditionally include or exclude

pieces of code depending on the configuration chosen at
compile time.
- We repair configurations separately and then merge the results

such that the final repaired code is correct under all desired
configurations.

11Using Machine Learning to Improve Security Analysis of
Source Code
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Ways to Engage with Us

• Download software and tools
• Explore research and capabilities
• Participate in education offerings
• Attend an event
• Search the digital library
• Read the SEI Year in Review
• Collaborate with the SEI on a new project
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890
412-268-5800 - Phone
888-201-4479 - Toll-Free
412-268-5758 - Fax
info@sei.cmu.edu - Email
www.sei.cmu.edu - Web

12Using Machine Learning to Improve Security Analysis of
Source Code
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

https://www.sei.cmu.edu/publications/software-tools/index.cfm
https://www.sei.cmu.edu/research-capabilities/index.cfm
https://www.sei.cmu.edu/education-outreach/index.cfm
https://www.sei.cmu.edu/news-events/events/index.cfm
https://resources.sei.cmu.edu/library/
https://resources.sei.cmu.edu/asset_files/AnnualReport/2019_001_001_552485.pdf
https://www.sei.cmu.edu/about/work-with-us/index.cfm
mailto:info@sei.cmu.edu
http://www.sei.cmu.edu/

	Using Machine Learning to Improve Security Analysis of Source Code
	Disclaimer
	Research Projects at SEI/CERT
	Research Teams
	Finding Code Defects – ML that Considers Source Code as Natural Language
	Finding Code Defects Using Machine Learning
	Introduction and Integration of Machine Learning
	Automated Code Repair (ACR) Tool as a Black Box
	Why repair of source code instead of as a compiler pass?�
	Source Code Repair Pipeline
	Challenges
	Ways to Engage with Us

Accessibility Report

		Filename:

		1-sherman-accessible.pdf

		Report created by:

		Emily Schneider

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 29

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

