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Research Projects at SEI/
CERT

Source Code as Natural Language 
Combining Source Code Analyzers 
Automated Source Code Repair
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Finding Code Defects – ML that Considers 
Source Code as Natural Language

Analyze Source Code for 
Insecure Coding
• Supplements Compiler-style

Checking
• Treats Programs Like Natural

Language

Sources: Carson D. Sestili, William S. Snavely, Nathan M. VanHoudnos, Towards security defect prediction with AI, Sep 12, 
2018, read the article online here.
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Finding Code Defects Using Machine 
Learning

Static 
Analysis 
Tool(s)

Alerts

Alert 
Consolidation 
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ML Classifier 
Development

Codebase 
1
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2

Codebase 
3

Training Data

Read the L. Flynn publications at SEI Digital Library here. 
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 Introduction and Integration of Machine 
Learning 

Earlier:  
Aggregate tools 

• Combine multiple 
tool outputs

• Assist analyst with 
combining outputs 
and tracking 
decisions

FY16: Explore  ML 

• Limited tools
• Limited error types
• Limited training data
• Limited features

FY17: Expand  
training data 

• Common lexicon and 
labeling process

• Synthetic generation
with test suites

• Increased feature
space

FY18 -19: Expand 
analysis tools  
and processes 

• Alternative tools  for
generating 
measurements

• Alternative feature 
extraction

• Alternative ML 
algorithms, e.g., 
active learning

FY20 -21:  
Expansion and 
integration into  

DevSecOps 

• CI/CD  data sources
• Rapid feedback
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Automated Code Repair (ACR) Tool as a 
Black Box

Input: Buildable codebase

Output: Repaired source 
code that is still human-
readable and maintainable.

We currently support C code. 
Support for C++ can likely be 
added without too much 
difficulty.

ACR Tool

printf(  
name);

printf(  
"%s",
name);

Read Will Klieber, Automated Code Repair to Ensure Memory Safety, Feb 24, 2020, here.
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Why repair of source code instead of as a 
compiler pass?

Repair of source code Repair as a compiler pass

Easily audited (if desired). Must trust the tool.

Repairs can easily be tweaked to 
improve performance, if necessary.

Difficult to remediate performance 
issues caused by repair.

Changes to source code are frequent 
and easily handled.

Changes to the build process may be 
more difficult and error-prone.

Okay to do slow, heavy-weight static 
analysis; produces a persistent artifact.

Slowing down every test build is not 
okay.
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Source Code Repair Pipeline

  map mapSource
Code

1. Record
Source↔AST

mapping

Abstract 
Syntax Tree

(AST)

2. Record
AST↔IR
mapping

Intermediate
Representation (IR)

3. Perform analysis
and repair at IR

level

4. Map repaired
IR back to AST

5. Map repaired
AST back to source
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Challenges

• In translating repairs from AST to source, the C
preprocessor is main difficulty.
- Repairs to macro uses
- Repairs to #included code
- Conditional-compilation directives (#ifdef, #endif, etc.) inside

expressions

• Considerations of whitespace
• The C preprocessor can conditionally include or exclude

pieces of code depending on the configuration chosen at
compile time.
- We repair configurations separately and then merge the results

such that the final repaired code is correct under all desired
configurations.
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Ways to Engage with Us

• Download software and tools
• Explore research and capabilities
• Participate in education offerings
• Attend an event
• Search the digital library
• Read the SEI Year in Review
• Collaborate with the SEI on a new project
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890
412-268-5800 - Phone
888-201-4479 - Toll-Free
412-268-5758 - Fax
info@sei.cmu.edu - Email
www.sei.cmu.edu - Web
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