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Emerging languages build  in security features 

Java: static types, 
stack inspection 

Jif: information flow 

E: capability safety 

Rust: safe memory 
management 

Why should I use 
language  based 
security? 

Because  it can 
eliminate whole 
classes of 
vulnerabilities 
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Not all features are useful, or usable 

Example class experience with an information flow type system 

Successful case: 

Ph.D. student in 
programming languages 

Unsuccessful  case: 

Everybody else 
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What PL-based security features are ready… 

…for language designers to integrate? 

…for early adopters to use? 

To find out, let’s 
do a case study! 



  

The Wyvern PL has novel  security features 

Wyvern was designed from the ground up to be secure. It has static types, plus: 

Wyvern 
+ RegEx
+ SQL

Language 
extensions 

Object 
capabilities 

Effect 
system 

RQ 1: Can we write programs 
with these features? 

RQ 2: Do  these features aid 
security in practice? 
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Building an I/O library is a useful case study 

• Everything dangerous involves input or output

read_password()  launch_missiles() 

• We built a small standard I/O library for Wyvern, and investigated…
• For what purposes could we use Wyvern’s security features?
• How did these features enhance system security?
• Were there any barriers to using these features?
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Want to limit privileges of untrusted code 

?
Untrusted.java 

Past sandboxing solutions (e.g. Java) 
• Complex   error-prone
• Many past vulnerabilities

I want to use 
this module, 
but is it safe? 
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Capabilities give you the ability to do things

Zeus 

With my lightning 
bolt,  I can  
destroy anything! 

Luke  Castellan 

I can’t do anything 
bad…unless I get 
that bolt! 
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Wyvern’s object capabilities control privileges 

System resources are objects  

fileSystem 

All actions are methods 
on a capability  

fileSystem.open(“log.txt”)  
.write(“hello!”)  

An object reference 
is a capability 

network 

network.send(packet)  

Capabilities only come 
from other capabilities  

new   File(“passwd.txt”)  
.write(…) X 
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Capability granularities in file system design 

Capability to entire file system     FileSystem 

directory For("/ tm p") 

Capability to all     files in a 
directory     Directory 

Capability to a single file     

        

files() 

File 

makeReader() make Writer() 

Reader Writer Read-only access to a     file     
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Restricting  untrusted module  privileges 

I want to use a 
third-party module, 
but don’t fully trust  
it 

Module written by 
trusted party

Shucks!  All I 
can do is read 
one  lousy file! 

Module written by 
untrusted party
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Other permissions supported by wrapping 

• Missing: read-only directory access
• Maybe   not general enough to justify in design

• But   we   can build it!

Module written by  
untrusted party

ReadOnly-
Directory  

files(

 

ReadOnlyFile  

)  
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Capabilities were effective; tweaks can help 

• Design provides useful granularity variations

• Supports user-defined abstractions

• Extensions to Wyvern’s type system could make wrapping more efficient
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Effects:  static reasoning about I/O actions 

resource  type Writer 
 effect Write 

def write(s: String) : {this.Write} Unit 

• Interesting tradeoffs between global and file-specific effects

• Study motivated new effect-checking features
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PL extensions mitigate command injection 

credit XKCD: HTTP://XKCD.COM/327/ 

• Command injection can’t happen if programmers write literal commands
• Instead of embedding them in strings

• Case study: simple but expressive library for string formatting (printf, etc.)
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Wyvern I/O  Library Case Study Takeaways 

• Capabilities support the principle of least privilege

• Effects support static reasoning about I/O actions

• Language extensions mitigate command injection

• Identified language design improvements
• Follow-up research working on this now!

• Read more: Jennifer Fish, Darya Melicher, and Jonathan Aldrich. A Case
Study in Language-Based Security: Building an I/O Library for Wyvern. To appear in
Onward! 2020.
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