

A Case Study in Language-Based Security:
Building an I/O Library for Wyvern

 Jonathan Aldrich
aldrich@cs.cmu.edu

http://www.cs.cmu.edu/~aldrich/

Jennifer Fish, Darya Melicher, and Jonathan Aldrich.
A Case Study in Language-Based Security:
Building an I/O Library for Wyvern.
To appear in Onward! 2020.

CyLab Partners Conference

September 2020

Emerging languages build in security features

Java: static types,
stack inspection

Jif: information flow

E: capability safety

Rust: safe memory
management

Why should I use
language based
security?

Because it can
eliminate whole
classes of
vulnerabilities

2

Not all features are useful, or usable

Example class experience with an information flow type system

Successful case:

Ph.D. student in
programming languages

Unsuccessful case:

Everybody else

3

4

What PL-based security features are ready…

…for language designers to integrate?

…for early adopters to use?

To find out, let’s
do a case study!

The Wyvern PL has novel security features

Wyvern was designed from the ground up to be secure. It has static types, plus:

Wyvern
+ RegEx
+ SQL

Language
extensions

Object
capabilities

Effect
system

RQ 1: Can we write programs
with these features?

RQ 2: Do these features aid
security in practice?

5

Building an I/O library is a useful case study

• Everything dangerous involves input or output

read_password() launch_missiles()

• We built a small standard I/O library for Wyvern, and investigated…
• For what purposes could we use Wyvern’s security features?
• How did these features enhance system security?
• Were there any barriers to using these features?

 6

Want to limit privileges of untrusted code

?
Untrusted.java

Past sandboxing solutions (e.g. Java)
• Complex error-prone
• Many past vulnerabilities

I want to use
this module,
but is it safe?

7

Capabilities give you the ability to do things

Zeus

With my lightning
bolt, I can
destroy anything!

Luke Castellan

I can’t do anything
bad…unless I get
that bolt!

8

Wyvern’s object capabilities control privileges

System resources are objects

fileSystem

All actions are methods
on a capability

fileSystem.open(“log.txt”)
.write(“hello!”)

An object reference
is a capability

network

network.send(packet)

Capabilities only come
from other capabilities

new File(“passwd.txt”)
.write(…) X

 9

Capability granularities in file system design

Capability to entire file system FileSystem

directory For("/ tm p")

Capability to all files in a
directory Directory

Capability to a single file

files()

File

makeReader() make Writer()

Reader Writer Read-only access to a file

 10

Restricting untrusted module privileges

I want to use a
third-party module,
but don’t fully trust
it

Module written by
trusted party

Shucks! All I
can do is read
one lousy file!

Module written by
untrusted party

11

Other permissions supported by wrapping

• Missing: read-only directory access
• Maybe not general enough to justify in design

• But we can build it!

Module written by
untrusted party

ReadOnly-
Directory

files(

ReadOnlyFile

)

 12

Capabilities were effective; tweaks can help

• Design provides useful granularity variations

• Supports user-defined abstractions

• Extensions to Wyvern’s type system could make wrapping more efficient

13

Effects: static reasoning about I/O actions

resource type Writer
 effect Write

def write(s: String) : {this.Write} Unit

• Interesting tradeoffs between global and file-specific effects

• Study motivated new effect-checking features

14

PL extensions mitigate command injection

credit XKCD: HTTP://XKCD.COM/327/

• Command injection can’t happen if programmers write literal commands
• Instead of embedding them in strings

• Case study: simple but expressive library for string formatting (printf, etc.)

15

HTTP://XKCD.COM/327

Wyvern I/O Library Case Study Takeaways

• Capabilities support the principle of least privilege

• Effects support static reasoning about I/O actions

• Language extensions mitigate command injection

• Identified language design improvements
• Follow-up research working on this now!

• Read more: Jennifer Fish, Darya Melicher, and Jonathan Aldrich. A Case
Study in Language-Based Security: Building an I/O Library for Wyvern. To appear in
Onward! 2020.

16

	A Case Study in Language-Based Security: Building an I/O Library for Wyvern
	Emerging languages build in security features
	Not all features are useful, or usable
	What PL-based security features are ready…
	The Wyvern PL has novel security features
	Building an I/O library is a useful case study
	Want to limit privileges of untrusted code
	Capabilitites give you the ability to do things
	Wyvern’s object capabilities control privileges
	Capability granularities in file system design
	Restricting untrusted module privileges
	Other permissions supported by wrapping
	Capabilities were effective; tweaks can help
	Effects: static reasoning about I/O actions
	PL extensions mitigate command injection
	Wyvern I/O Library Case Study Takeaways

Accessibility Report

		Filename:

		1-aldrich-accessible.pdf

		Report created by:

		Emily Schneider

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 29

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

